This paper deals with the problem of estimating the level sets L(c) = {F(x) ≥ c}, with c ∈ (0,1), of an unknown distribution function F on ℝ+2. A plug-in approach is followed. That is, given a consistent estimator Fn of F, we estimate L(c) by Ln(c) = {Fn(x) ≥ c}. In our setting, non-compactness property is a priori required for the level sets to estimate. We state consistency results with respect to the Hausdorff distance and the volume of the symmetric difference. Our results are motivated by applications in multivariate risk theory. In particular we propose a new bivariate version of the conditional tail expectation by conditioning the two-dimensional random vector to be in the level set L(c). We also present simulated and real examples which illustrate our theoretical results.
Mots clés : level sets, distribution function, plug-in estimation, Hausdorff distance, conditional tail expectation
@article{PS_2013__17__236_0, author = {Di Bernardino, Elena and Lalo\"e, Thomas and Maume-Deschamps, V\'eronique and Prieur, Cl\'ementine}, title = {Plug-in estimation of level sets in a non-compact setting with applications in multivariate risk theory}, journal = {ESAIM: Probability and Statistics}, pages = {236--256}, publisher = {EDP-Sciences}, volume = {17}, year = {2013}, doi = {10.1051/ps/2011161}, mrnumber = {3021318}, language = {en}, url = {http://www.numdam.org/articles/10.1051/ps/2011161/} }
TY - JOUR AU - Di Bernardino, Elena AU - Laloë, Thomas AU - Maume-Deschamps, Véronique AU - Prieur, Clémentine TI - Plug-in estimation of level sets in a non-compact setting with applications in multivariate risk theory JO - ESAIM: Probability and Statistics PY - 2013 SP - 236 EP - 256 VL - 17 PB - EDP-Sciences UR - http://www.numdam.org/articles/10.1051/ps/2011161/ DO - 10.1051/ps/2011161 LA - en ID - PS_2013__17__236_0 ER -
%0 Journal Article %A Di Bernardino, Elena %A Laloë, Thomas %A Maume-Deschamps, Véronique %A Prieur, Clémentine %T Plug-in estimation of level sets in a non-compact setting with applications in multivariate risk theory %J ESAIM: Probability and Statistics %D 2013 %P 236-256 %V 17 %I EDP-Sciences %U http://www.numdam.org/articles/10.1051/ps/2011161/ %R 10.1051/ps/2011161 %G en %F PS_2013__17__236_0
Di Bernardino, Elena; Laloë, Thomas; Maume-Deschamps, Véronique; Prieur, Clémentine. Plug-in estimation of level sets in a non-compact setting with applications in multivariate risk theory. ESAIM: Probability and Statistics, Tome 17 (2013), pp. 236-256. doi : 10.1051/ps/2011161. http://www.numdam.org/articles/10.1051/ps/2011161/
[1] Coherent measures of risk. Math. Finance 9 (1999) 203-228. | MR | Zbl
, , and ,[2] Total error in a plug-in estimator of level sets. Statist. Probab. Lett. 65 (2003) 411-417. | MR | Zbl
,[3] Convergence rates in nonparametric estimation of level sets. Statist. Probab. Lett. 53 (2001) 27-35. | MR | Zbl
, and ,[4] Quantile curves and dependence structure for bivariate distributions. Comput. Stat. Data Anal. 51 (2007) 5112-5129. | MR | Zbl
, , and ,[5] A graph-based estimator of the number of clusters. ESAIM : PS 11 (2007) 272-280. | Numdam | MR | Zbl
, and ,[6] Probability and measure. Wiley Series in Probability and Mathematical Statistics, 3th edition, John Wiley & Sons Inc., A Wiley-Interscience Publication, New York (1995). | MR | Zbl
,[7] Kernel estimation of density level sets. J. Multivar. Anal. 97 (2006) 999-1023. | MR | Zbl
,[8] Conditional tail expectations for multivariate phase-type distributions. J. Appl. Probab. 42 (2005) 810-825. | MR | Zbl
and ,[9] Nonparametric estimation of regression level sets. Statistics (Berl. DDR) 29 (1997) 131-160. | MR | Zbl
,[10] Smooth estimation of multivariate survival and density functions. J. Statist. Plann. Inference 103 (2002) 361-376; C. R. Rao 80th birthday felicitation volume, Part I. | MR | Zbl
and ,[11] A plug-in approach to support estimation. Ann. Stat. 25 (1997) 2300-2312. | MR | Zbl
and ,[12] On boundary estimation. Adv. Appl. Probab. 36 (2004) 340-354. | MR | Zbl
and ,[13] Plug-in estimation of general level sets. Australian & New Zealand J. Statist. 48 (2006) 7-19. | MR | Zbl
, and ,[14] Large quantile estimation in a multivariate setting. J. Multivar. Anal. 53 (1995) 247-263. | MR | Zbl
and ,[15] Restricted optimal retention in stop-loss reinsurance under VaR and CTE risk measures. Proc. of Rom. Acad. Ser. A 11 (2010) 213-217. | MR
and ,[16] Actuarial Theory for Dependent Risks. Wiley, (2005).
, , and ,[17] Bounds for functions of multivariate risks. J. Multivar. Anal. 97 (2006) 526-547. | MR | Zbl
and ,[18] Central regions for bivariate distributions. Austrian J. Stat. 31 (2002) 141-156.
and ,[19] Understanding relationships using copulas. North Amer. Actuar. J. 2 (1998) 1-25. | MR | Zbl
and ,[20] Estimation of a convex density contour in two dimensions. J. Amer. Statist. Assoc. 82 (1987) 267-270. | MR | Zbl
,[21] M-estimation, convexity and quantiles. Ann. Statist. 25 (1997) 435-477. | MR | Zbl
,[22] Sur Quelques Problèmes d'Apprentissage Supervisé et Non Supervisé. Ph.D. thesis, University Montpellier II (2009).
,[23] Halfplane trimming for bivariate distributions. J. Multivar. Anal. 48 (1994) 188-202. | MR | Zbl
and ,[24] Kendall distributions and level sets in bivariate exchangeable survival models. Inform. Sci. 179 (2009) 2878-2890. | MR | Zbl
and ,[25] Measuring mass concentrations and estimating density contour clusters - an excess mass approach. Ann. Stat. 23 (1995) 855-881. | MR | Zbl
,[26] Minimum volume sets and generalized quantile processes. Stoch. Proc. Appl. 69 (1997) 1-24. | MR | Zbl
,[27] Optimal rates for plug-in estimators of density level sets. Bernoulli. 15 (2009) 1154-1178. | MR | Zbl
and ,[28] Estimacíon de conjuntos y sus fronteras. Un enfoque geometrico. Ph.D. thesis, University of Santiago de Compostela (2003).
.[29] Sulle curve di livello di una superficie di ripartizione in due variabili; on level curves of two dimensional distribution function. Giornale dell'Istituto Italiano degli Attuari 36 (1973) 87-108. | Zbl
,[30] Proprietà geometriche delle superficie di ripartizione. Rend. Mat. (6) 9 (1976) 725-736 (1977). | MR | Zbl
,[31] Quantile functions for multivariate analysis : approaches and applications. Stat. Neerlandica 56 (2002) 214-232 Special issue : Frontier research in theoretical statistics (2000) (Eindhoven). | MR | Zbl
,[32] On a new notion of multidimensional quantile. Metron 51 (1993) 77-83. | MR | Zbl
,[33] On nonparametric estimation of density level sets. Ann. Stat. 25 (1997) 948-969. | MR | Zbl
,Cité par Sources :