Multifractional brownian fields indexed by metric spaces with distances of negative type
ESAIM: Probability and Statistics, Tome 17 (2013), pp. 219-223.

We define multifractional Brownian fields indexed by a metric space, such as a manifold with its geodesic distance, when the distance is of negative type. This construction applies when the Brownian field indexed by the metric space exists, in particular for spheres, hyperbolic spaces and real trees.

DOI : 10.1051/ps/2011157
Classification : 60G18, 60G15, 60G52
Mots-clés : fractional brownian motion, self-similarity, complex variations, H-sssi processes
@article{PS_2013__17__219_0,
     author = {Istas, Jacques},
     title = {Multifractional brownian fields indexed by metric spaces with distances of negative type},
     journal = {ESAIM: Probability and Statistics},
     pages = {219--223},
     publisher = {EDP-Sciences},
     volume = {17},
     year = {2013},
     doi = {10.1051/ps/2011157},
     mrnumber = {3021316},
     zbl = {1296.60094},
     language = {en},
     url = {http://www.numdam.org/articles/10.1051/ps/2011157/}
}
TY  - JOUR
AU  - Istas, Jacques
TI  - Multifractional brownian fields indexed by metric spaces with distances of negative type
JO  - ESAIM: Probability and Statistics
PY  - 2013
SP  - 219
EP  - 223
VL  - 17
PB  - EDP-Sciences
UR  - http://www.numdam.org/articles/10.1051/ps/2011157/
DO  - 10.1051/ps/2011157
LA  - en
ID  - PS_2013__17__219_0
ER  - 
%0 Journal Article
%A Istas, Jacques
%T Multifractional brownian fields indexed by metric spaces with distances of negative type
%J ESAIM: Probability and Statistics
%D 2013
%P 219-223
%V 17
%I EDP-Sciences
%U http://www.numdam.org/articles/10.1051/ps/2011157/
%R 10.1051/ps/2011157
%G en
%F PS_2013__17__219_0
Istas, Jacques. Multifractional brownian fields indexed by metric spaces with distances of negative type. ESAIM: Probability and Statistics, Tome 17 (2013), pp. 219-223. doi : 10.1051/ps/2011157. http://www.numdam.org/articles/10.1051/ps/2011157/

[1] B. Bekka, P. De La Harpe and A. Valette, Kazhdan's property (T). Cambridge University Press (2008). | Zbl

[2] A. Benassi, S. Jaffard and D. Roux, Gaussian processes and pseudodifferential elliptic operators. Rev. Mat. Iberoam. 13 (1997) 19-90. | MR | Zbl

[3] A. Benassi, S. Cohen and J. Istas, Identifying the multifractional function of a Gaussian process. Stat. Probab. Lett. 39 (1998) 337-345. | MR | Zbl

[4] N. Chentsov, Lévy's Brownian motion of several parameters and generalized white noise. Theory Probab. Appl. 2 (1957) 265-266.

[5] J. Faraut and H. Harzallah, Distances hilbertiennes invariantes sur un espace homogène. Ann. Inst. Fourier 24 (1974) 171-217. | Numdam | MR | Zbl

[6] A. Kolmogorov, Wienersche Spiralen und einige andere interessante Kurven im Hilbertsche Raum (German). C. R. (Dokl.) Acad. Sci. URSS 26 (1940) 115-118. | MR | Zbl

[7] C. Lacaux, Real harmonizable multifractional Lévy motions. Ann. Inst. Henri Poincaré 40 (2004) 259-277. | Numdam | MR | Zbl

[8] C. Lacaux, Series representation and simulation of multifractional Lévy motions. Adv. Appl. Probab. 36 (2004) 171-197. | MR | Zbl

[9] P. Lévy, Processus stochastiques et mouvement Brownien. Gauthier-Villars (1965). | MR | Zbl

[10] J. Istas, Spherical and hyperbolic fractional Brownian motion. Electron. Commun. Probab. 10 (2005) 254-262. | MR | Zbl

[11] J. Istas, On fractional stable fields indexed by metric spaces. Electron. Commun. Probab. 11 (2006) 242-251. | MR | Zbl

[12] J. Istas and C. Lacaux, On locally self-similar fractional random fields indexed by a manifold. Preprint (2009). | MR | Zbl

[13] B. Mandelbrot and J. Van Ness, Fractional Brownian motions, fractional noises and applications. SIAM Review 10 (1968) 422-437. | MR | Zbl

[14] R. Peltier and J. Lévy-Vehel, Multifractional Brownian motion : definition and preliminary results. Rapport de recherche de l'INRIA 2645 (1996).

[15] A. Valette, Les représentations uniformément bornées associées à un arbre réel. Bull. Soc. Math. Belgique 42 (1990) 747-760. | MR | Zbl

Cité par Sources :