Incremental moments and Hölder exponents of multifractional multistable processes
ESAIM: Probability and Statistics, Tome 17 (2013), pp. 135-178.

Multistable processes, that is, processes which are, at each “time”, tangent to a stable process, but where the index of stability varies along the path, have been recently introduced as models for phenomena where the intensity of jumps is non constant. In this work, we give further results on (multifractional) multistable processes related to their local structure. We show that, under certain conditions, the incremental moments display a scaling behaviour, and that the pointwise Hölder exponent is, as expected, related to the local stability index. We compute the precise value of the almost sure Hölder exponent in the case of the multistable Lévy motion, which turns out to reveal an interesting phenomenon.

DOI : 10.1051/ps/2011151
Classification : 60G17, 60G18, 60G22, 60G52
Mots clés : localisable processes, multistable processes, multifractional processes, pointwise Hölder regularity
@article{PS_2013__17__135_0,
     author = {Le Gu\'evel, Ronan and V\'ehel, Jacques L\'evy},
     title = {Incremental moments and {H\"older} exponents of multifractional multistable processes},
     journal = {ESAIM: Probability and Statistics},
     pages = {135--178},
     publisher = {EDP-Sciences},
     volume = {17},
     year = {2013},
     doi = {10.1051/ps/2011151},
     mrnumber = {3021313},
     zbl = {1292.60050},
     language = {en},
     url = {http://www.numdam.org/articles/10.1051/ps/2011151/}
}
TY  - JOUR
AU  - Le Guével, Ronan
AU  - Véhel, Jacques Lévy
TI  - Incremental moments and Hölder exponents of multifractional multistable processes
JO  - ESAIM: Probability and Statistics
PY  - 2013
SP  - 135
EP  - 178
VL  - 17
PB  - EDP-Sciences
UR  - http://www.numdam.org/articles/10.1051/ps/2011151/
DO  - 10.1051/ps/2011151
LA  - en
ID  - PS_2013__17__135_0
ER  - 
%0 Journal Article
%A Le Guével, Ronan
%A Véhel, Jacques Lévy
%T Incremental moments and Hölder exponents of multifractional multistable processes
%J ESAIM: Probability and Statistics
%D 2013
%P 135-178
%V 17
%I EDP-Sciences
%U http://www.numdam.org/articles/10.1051/ps/2011151/
%R 10.1051/ps/2011151
%G en
%F PS_2013__17__135_0
Le Guével, Ronan; Véhel, Jacques Lévy. Incremental moments and Hölder exponents of multifractional multistable processes. ESAIM: Probability and Statistics, Tome 17 (2013), pp. 135-178. doi : 10.1051/ps/2011151. http://www.numdam.org/articles/10.1051/ps/2011151/

[1] A. Ayache and J. Lévy Véhel, The generalized multifractional Brownian motion. Stat. Inference Stoch. Process. 3 (2000) 7-18. | MR | Zbl

[2] A. Benassi, S. Jaffard and D. Roux, Gaussian processes and pseudodifferential elliptic operators. Rev. Mat. Iberoam. 13 (1997) 19-89. | MR | Zbl

[3] V. Bentkus, A. Juozulynas and V. Paulauskas, Lévy-LePage series representation of stable vectors : convergence in variation. J. Theoret. Probab. 14 (2001) 949-978. | MR | Zbl

[4] K.J. Falconer, Tangent fields and the local structure of random fields. J. Theoret. Probab. 15 (2002) 731-750. | MR | Zbl

[5] K.J. Falconer, The local structure of random processes. J. London Math. Soc. 267 (2003) 657-672. | MR | Zbl

[6] K.J. Falconer and J. Lévy Véhel, Multifractional, multistable, and other processes with prescribed local form. J. Theoret. Probab. (2008) DOI: 10.1007/s10959-008-0147-9. | Zbl

[7] K.J. Falconer and L. Lining, Multistable random measures and multistable processes. Preprint (2009).

[8] K.J. Falconer, R. Le Guével, and J. Lévy Véhel, Localisable moving average stable and multistable processes. Stoch. Models (2009) 648-672. | Zbl

[9] T.S. Ferguson and M.J. Klass, A representation of independent increment processes without Gaussian components. Ann. Math. Stat. 43 (1972) 1634-1643. | MR | Zbl

[10] E. Herbin, From -parameter fractional Brownian motions to -parameter multifractional Brownian motion. Rocky Mt. J. Math. 36 (2006) 1249-1284. | MR | Zbl

[11] E. Herbin and J. Lévy Véhel, Stochastic 2 micro-local analysis. Stoch. Proc. Appl. 119 (2009) 2277-2311. | Zbl

[12] A.N. Kolmogorov, Wienersche Spiralen und einige andere interessante Kurven in Hilbertchen Raume. Doklady 26 (1940) 115-118. | JFM | MR | Zbl

[13] R. Le Guével and J. Lévy Véhel, A Ferguson-Klass-LePage series representation of multistable multifractional motions and related processes, preprint (2009). Available at http://arxiv.org/abs/0906.5042. | Zbl

[14] R. Le Page, Multidimensional infinitely divisible variables and processes. I. Stable caseTech. Rep. 292, Dept. Stat., Stanford Univ. (1980). | MR

[15] R. Le Page, Multidimensional infinitely divisible variables and processes, II Probability in Banach Spaces III. Springer, New York, Lect. Notes Math. 860 (1980) 279-284. | MR | Zbl

[16] M. Ledoux and M. Talagrand, Probability in Banach spaces. Springer-Verlag (1996). | MR | Zbl

[17] B.B. Mandelbrot and J. Van Ness, Fractional Brownian motion, fractional noises and applications. SIAM Review 10 (1968) 422-437. | MR | Zbl

[18] R.F. Peltier and J. Lévy Véhel, Multifractional Brownian motion : definition and preliminary results. Rapport de recherche de l'INRIA, No. 2645 (1995). Available at : http://www-rocq1.inria.fr/fractales/index.php?page=publications.

[19] V. Petrov, Limit Theorems of Probability Theory. Oxford Science Publication (1995). | MR | Zbl

[20] J. Rosinski, On series representations of infinitely divisible random vectors. Ann. Probab. 18 (1990) 405-430. | MR | Zbl

[21] G. Samorodnitsky and M.S. Taqqu, Stable Non-Gaussian Random Processes. Chapman and Hall (1994). | MR | Zbl

[22] S. Stoev and M.S. Taqqu, Stochastic properties of the linear multifractional stable motion. Adv. Appl. Probab. 36 (2004) 1085-1115 | MR | Zbl

[23] S. Stoev and M.S. Taqqu, Path properties of the linear multifractional stable motion. Fractals 13 (2005) 157-178. | MR

[24] B. Von Bahr and C.G. Essen, Inequalities for the th absolute moment of a sum of Random variables, 1 ¡= r ¡= 2. Ann. Math. Stat. 36 (1965) 299-303. | MR | Zbl

Cité par Sources :