On donne des exemples d'entrelacements entre semi-groupes markoviens obtenus au moyen de considérations de théorie des groupes sur les paires de Gelfand
Mots-clés : entrelacement de semi-groupes de noyaux markoviens, paires de Gelfand
@article{PS_2011__15__S2_0, author = {Biane, Philippe}, title = {Entrelacements de semi-groupes provenant de paires de {Gelfand}}, journal = {ESAIM: Probability and Statistics}, pages = {S2--S10}, publisher = {EDP-Sciences}, volume = {15}, year = {2011}, doi = {10.1051/ps/2010025}, mrnumber = {2817341}, language = {fr}, url = {http://www.numdam.org/articles/10.1051/ps/2010025/} }
TY - JOUR AU - Biane, Philippe TI - Entrelacements de semi-groupes provenant de paires de Gelfand JO - ESAIM: Probability and Statistics PY - 2011 SP - S2 EP - S10 VL - 15 PB - EDP-Sciences UR - http://www.numdam.org/articles/10.1051/ps/2010025/ DO - 10.1051/ps/2010025 LA - fr ID - PS_2011__15__S2_0 ER -
Biane, Philippe. Entrelacements de semi-groupes provenant de paires de Gelfand. ESAIM: Probability and Statistics, Tome 15 (2011), pp. S2-S10. doi : 10.1051/ps/2010025. http://www.numdam.org/articles/10.1051/ps/2010025/
[1] Quantum random walk on the dual of SU(n). Probab. Theory Relat. Fields 89 (1991) 117-129. | MR | Zbl
,[2] Minuscule weights and random walks on lattices, Quantum probability and related topics, QP-PQ VII. World Scientific Publishing, River Edge, NJ (1992) 51-65. | MR | Zbl
,[3] Intertwining of Markov semi-groups, some examples. in Séminaire de Probabilités XXIX. Lecture Notes in Math. 1613, Springer, Berlin (1995) 30-36. | EuDML | Numdam | MR | Zbl
,[4] Quantum Markov processes and group representations, Quantum probability communications, QP-PQ X. World Scientific Publishing, River Edge, NJ (1998) 53-72. | MR
,[5] Le théorème de Pitman, le groupe quantique SUq(2), et une question de P.A. Meyer, In memoriam Paul-André Meyer, in Séminaire de Probabilités XXXIX. Lecture Notes in Math. 1874, Springer, Berlin (2006) 61-75. | MR | Zbl
,[6] Beta-gamma random variables and intertwining relations between certain Markov processes. Rev. Mat. Iberoamericana 14 (1998) 311-367. | EuDML | MR | Zbl
, and ,[7] Analyse harmonique des groupes d'automorphismes d'arbres de Bruhat-Tits. Mém. Soc. Math. France (N.S.) 58 (1994) | EuDML | Numdam | MR | Zbl
,[8] Noncommutative geometry. Academic Press, Inc., San Diego, CA (1994). | MR | Zbl
,[9] Reflected planar Brownian motions, intertwining relations and crossing probabilities. Ann. Inst. H. Poincaré Probab. Statist. 40 (2004) 539-552. | EuDML | Numdam | MR | Zbl
,[10] Analyse sur les paires de Gelfand, in Analyse harmonique. Les Cours du CIMPA (1982).
,[11] Distances hilbertiennes invariantes sur un espace homogène. Ann. Inst. Fourier (Grenoble) 24 (1974) 171-217. | EuDML | Numdam | MR | Zbl
and ,[12] Principe de moindre action, propagation de la chaleur et estimées sous-elliptiques sur certains groupes nilpotents. Acta Math. 139 (1977) 95-153. | MR | Zbl
,[13] Fractional intertwinings between two Markov semi-groups. Potential Anal. 31 (2009) 133-146. | MR | Zbl
and ,[14] An analogue of Pitman's 2M - X theorem for exponential Wiener functionals. Part I. A time-inversion approach. Nagoya Math. J. 159 (2000) 125-166. | MR | Zbl
and ,[15] Directed polymers and the quantum Toda lattice. arXiv:0910.0069 | MR | Zbl
,[16] An introduction to quantum stochastic calculus. Monographs Math. 85, Birkhäuser Verlag, Basel (1992). | MR | Zbl
,[17] One-dimensional Brownian motion and the three-dimensional Bessel process. Adv. Appl. Probab. 7 (1975) 511-526. | MR | Zbl
,Cité par Sources :