It is proved that each Hoeffding space associated with a random permutation (or, equivalently, with extractions without replacement from a finite population) carries an irreducible representation of the symmetric group, equivalent to a two-block Specht module.
Mots clés : exchangeability, finite population statistics, Hoeffding decompositions, irreducible representations, random permutations, Specht modules, symmetric group
@article{PS_2011__15__S58_0, author = {Peccati, Giovanni and Pycke, Jean-Renaud}, title = {Hoeffding spaces and {Specht} modules}, journal = {ESAIM: Probability and Statistics}, pages = {S58--S68}, publisher = {EDP-Sciences}, volume = {15}, year = {2011}, doi = {10.1051/ps/2010022}, mrnumber = {2817345}, language = {en}, url = {http://www.numdam.org/articles/10.1051/ps/2010022/} }
TY - JOUR AU - Peccati, Giovanni AU - Pycke, Jean-Renaud TI - Hoeffding spaces and Specht modules JO - ESAIM: Probability and Statistics PY - 2011 SP - S58 EP - S68 VL - 15 PB - EDP-Sciences UR - http://www.numdam.org/articles/10.1051/ps/2010022/ DO - 10.1051/ps/2010022 LA - en ID - PS_2011__15__S58_0 ER -
Peccati, Giovanni; Pycke, Jean-Renaud. Hoeffding spaces and Specht modules. ESAIM: Probability and Statistics, Tome 15 (2011), pp. S58-S68. doi : 10.1051/ps/2010022. http://www.numdam.org/articles/10.1051/ps/2010022/
[1] Exchangeability and related topics. École d'été de Probabilités de Saint-Flour XIII. LNM 1117, Springer, New York (1983). | MR | Zbl
,[2] Orthogonal decomposition of symmetric functions defined on random permutations. Combin. Probab. Comput. 14 (2005) 249-268. | MR | Zbl
,[3] Orthogonal decomposition of finite population statistics and its applications to distributional asymptotics. Ann. Stat. 29 (2001) 353-365. | MR | Zbl
and ,[4] An Edgeworth expansion for finite population statistics. Ann. Probab. 30 (2002) 1238-1265. | MR | Zbl
and ,[5] Group Representations in Probability and Statistics. IMS Lecture Notes - Monograph Series 11, Hayward, California (1988). | MR | Zbl
,[6] Lie groups. Springer-Verlag, Berlin-Heidelberg-New York (1997). | MR | Zbl
and ,[7] Hoeffding decompositions and urn sequences. Ann. Probab. 36 (2008) 2280-2310. | MR | Zbl
and ,[8] The representation theory of the symmetric groups. Lecture Notes in Math. 682, Springer-Verlag, Berlin-Heidelberg-New York (1978). | MR | Zbl
,[9] Hoeffding-ANOVA decompositions for symmetric statistics of exchangeable observations. Ann. Probab. 32 (2004) 1796-1829. | MR | Zbl
,[10] Decompositions of stochastic processes based on irreducible group representations. Theory Probab. Appl. 54 (2010) 217-245. | MR | Zbl
and ,[11] The Symmetric Group. Representations, Combinatorial Algorithms and Symmetric Functions, 2nd edition. Springer, New York (2001). | MR | Zbl
,[12] Approximation Theorems of Mathematical Statistics. Wiley, New York (1980). | MR | Zbl
,[13] Linear representations of finite groups, Graduate Texts Math. 42, Springer, New York (1977). | MR | Zbl
,[14] Normal approximation for finite-population U-statistics. Acta Math. Appl. Sinica 6 (1990) 263-272. | MR | Zbl
and ,Cité par Sources :