Continuous-time multitype branching processes conditioned on very late extinction
ESAIM: Probability and Statistics, Tome 15 (2011), pp. 417-442.

Multitype branching processes and Feller diffusion processes are conditioned on very late extinction. The conditioned laws are expressed as Doob h-transforms of the unconditioned laws, and an interpretation of the conditioned paths for the branching process is given, via the immortal particle. We study different limits for the conditioned process (increasing delay of extinction, long-time behavior, scaling limit) and provide an exhaustive list of exchangeability results.

DOI : 10.1051/ps/2010011
Classification : 60J60, 60J80
Mots-clés : multitype branching process, Feller diffusion process, conditioned branching process, diffusion limit, extinction, immortal particle, long-time behavior
@article{PS_2011__15__417_0,
     author = {P\'enisson, Sophie},
     title = {Continuous-time multitype branching processes conditioned on very late extinction},
     journal = {ESAIM: Probability and Statistics},
     pages = {417--442},
     publisher = {EDP-Sciences},
     volume = {15},
     year = {2011},
     doi = {10.1051/ps/2010011},
     mrnumber = {2870524},
     zbl = {1278.60134},
     language = {en},
     url = {http://www.numdam.org/articles/10.1051/ps/2010011/}
}
TY  - JOUR
AU  - Pénisson, Sophie
TI  - Continuous-time multitype branching processes conditioned on very late extinction
JO  - ESAIM: Probability and Statistics
PY  - 2011
SP  - 417
EP  - 442
VL  - 15
PB  - EDP-Sciences
UR  - http://www.numdam.org/articles/10.1051/ps/2010011/
DO  - 10.1051/ps/2010011
LA  - en
ID  - PS_2011__15__417_0
ER  - 
%0 Journal Article
%A Pénisson, Sophie
%T Continuous-time multitype branching processes conditioned on very late extinction
%J ESAIM: Probability and Statistics
%D 2011
%P 417-442
%V 15
%I EDP-Sciences
%U http://www.numdam.org/articles/10.1051/ps/2010011/
%R 10.1051/ps/2010011
%G en
%F PS_2011__15__417_0
Pénisson, Sophie. Continuous-time multitype branching processes conditioned on very late extinction. ESAIM: Probability and Statistics, Tome 15 (2011), pp. 417-442. doi : 10.1051/ps/2010011. http://www.numdam.org/articles/10.1051/ps/2010011/

[1] K.B. Athreya and P.E. Ney, Branching Processes. Springer-Verlag (1972). | MR | Zbl

[2] N. Champagnat and S. Rœlly, Limit theorems for conditioned multitype Dawson-Watanabe processes and Feller diffusions. Electronic Journal of Probability 13 (2008) 777-810. | MR | Zbl

[3] S. Dallaporta and A. Joffe, The Q-process in a multitype branching process. Int. J. Pure Appl. Math. 42 (2008) 235-240. | MR | Zbl

[4] S.N. Ethier and T.G. Kurtz, Markov processes: characterization and convergence. Wiley (1986). | MR | Zbl

[5] S.N. Evans, Two representations of a conditioned superprocess, in Proc. R. Soc. Edinb. Sect. A 123 (1993) 959-971. | MR | Zbl

[6] W. Feller, Diffusion processes in genetics, in Proceedings of the Second Berkeley Symposium on Mathematical Statistics and Probability, 1950, University of California Press, Berkeley and Los Angeles (1951) 227-246. | MR | Zbl

[7] F.R. Gantmacher, Matrizentheorie. Springer-Verlag (1986). | MR

[8] H.O. Georgii and E. Baake, Supercritical multitype branching processes: the ancestral types of typical individuals. Adv. Appl. Probab. 35 (2003) 1090-1110. | MR | Zbl

[9] K. Fleischmann and U. Prehn, Ein Grenzwertsatz für subkritische Verzweigungsprozesse mit endlich vielen Typen von Teilchen. Math. Nachr. 64 (1974) 357-362. | MR | Zbl

[10] K. Fleischmann and R. Siegmund-Schultze, The structure of reduced critical Galton-Watson processes. Math. Nachr. 79 (1977) 233-241. | MR | Zbl

[11] P. Jagers and A.N. Lagerås, General branching processes conditioned on extinction are still branching processes. Electronic Communications in Probability 13 (2008) 540-547. | MR | Zbl

[12] A. Joffe and M. Métivier, Weak convergence of sequences of semimartingales with applications to multitype branching processes. Adv. Appl. Probab. 18 (1986) 20-65. | MR | Zbl

[13] A. Joffe and F. Spitzer, On multitype branching processes with ρ1. J. Math. Anal. Appl. 19 (1967) 409-430. | MR | Zbl

[14] K. Kawazu and S. Watanabe, Branching processes with immigration and related limit theorems. Theory Probab. Appl. 16 (1971) 34-51. | MR | Zbl

[15] A.N. Kolmogorov, Zur Lösung einer biologischen Aufgabe. Comm. Math. Mech. Chebyshev Univ. Tomsk 2 (1938). | Zbl

[16] A. Lambert, Quasi-stationary distributions and the continuous-state branching process conditioned to be never extinct. Electronic Journal of Probability 12 (2007) 420-446. | MR | Zbl

[17] J. Lamperti and P. Ney, Conditioned branching process and their limiting diffusions. Theory Probab. Appl. 13 (1968) 126-137. | MR | Zbl

[18] Y. Ogura, Asymptotic behavior of multitype Galton-Watson processes. J. Math. Kyoto Univ. 15 (1975) 251-302. | MR | Zbl

[19] S. Rœlly and A. Rouault, Processus de Dawson-Watanabe conditionné par le futur lointain. C. R. Acad. Sci. Sér. I Math. 309 (1989) 867-872. | MR | Zbl

[20] E. Seneta, Non-negative matrices - An introduction to theory and applications. Halsted Press (1973). | MR | Zbl

[21] B.A. Sewastjanow, Verzweigungsprozesse. R. Oldenbourg Verlag (1975). | MR | Zbl

[22] A.M. Yaglom, Certain limit theorems of the theory of branching random processes. Doklady Akad. Nauk SSSR (N.S.) 56 (1947) 795-798. | MR | Zbl

Cité par Sources :