Multitype branching processes and Feller diffusion processes are conditioned on very late extinction. The conditioned laws are expressed as Doob h-transforms of the unconditioned laws, and an interpretation of the conditioned paths for the branching process is given, via the immortal particle. We study different limits for the conditioned process (increasing delay of extinction, long-time behavior, scaling limit) and provide an exhaustive list of exchangeability results.
Mots-clés : multitype branching process, Feller diffusion process, conditioned branching process, diffusion limit, extinction, immortal particle, long-time behavior
@article{PS_2011__15__417_0, author = {P\'enisson, Sophie}, title = {Continuous-time multitype branching processes conditioned on very late extinction}, journal = {ESAIM: Probability and Statistics}, pages = {417--442}, publisher = {EDP-Sciences}, volume = {15}, year = {2011}, doi = {10.1051/ps/2010011}, mrnumber = {2870524}, zbl = {1278.60134}, language = {en}, url = {http://www.numdam.org/articles/10.1051/ps/2010011/} }
TY - JOUR AU - Pénisson, Sophie TI - Continuous-time multitype branching processes conditioned on very late extinction JO - ESAIM: Probability and Statistics PY - 2011 SP - 417 EP - 442 VL - 15 PB - EDP-Sciences UR - http://www.numdam.org/articles/10.1051/ps/2010011/ DO - 10.1051/ps/2010011 LA - en ID - PS_2011__15__417_0 ER -
%0 Journal Article %A Pénisson, Sophie %T Continuous-time multitype branching processes conditioned on very late extinction %J ESAIM: Probability and Statistics %D 2011 %P 417-442 %V 15 %I EDP-Sciences %U http://www.numdam.org/articles/10.1051/ps/2010011/ %R 10.1051/ps/2010011 %G en %F PS_2011__15__417_0
Pénisson, Sophie. Continuous-time multitype branching processes conditioned on very late extinction. ESAIM: Probability and Statistics, Tome 15 (2011), pp. 417-442. doi : 10.1051/ps/2010011. http://www.numdam.org/articles/10.1051/ps/2010011/
[1] Branching Processes. Springer-Verlag (1972). | MR | Zbl
and ,[2] Limit theorems for conditioned multitype Dawson-Watanabe processes and Feller diffusions. Electronic Journal of Probability 13 (2008) 777-810. | MR | Zbl
and ,[3] The -process in a multitype branching process. Int. J. Pure Appl. Math. 42 (2008) 235-240. | MR | Zbl
and ,[4] Markov processes: characterization and convergence. Wiley (1986). | MR | Zbl
and ,[5] Two representations of a conditioned superprocess, in Proc. R. Soc. Edinb. Sect. A 123 (1993) 959-971. | MR | Zbl
,[6] Diffusion processes in genetics, in Proceedings of the Second Berkeley Symposium on Mathematical Statistics and Probability, 1950, University of California Press, Berkeley and Los Angeles (1951) 227-246. | MR | Zbl
,[7] Matrizentheorie. Springer-Verlag (1986). | MR
,[8] Supercritical multitype branching processes: the ancestral types of typical individuals. Adv. Appl. Probab. 35 (2003) 1090-1110. | MR | Zbl
and ,[9] Ein Grenzwertsatz für subkritische Verzweigungsprozesse mit endlich vielen Typen von Teilchen. Math. Nachr. 64 (1974) 357-362. | MR | Zbl
and ,[10] The structure of reduced critical Galton-Watson processes. Math. Nachr. 79 (1977) 233-241. | MR | Zbl
and ,[11] General branching processes conditioned on extinction are still branching processes. Electronic Communications in Probability 13 (2008) 540-547. | MR | Zbl
and ,[12] Weak convergence of sequences of semimartingales with applications to multitype branching processes. Adv. Appl. Probab. 18 (1986) 20-65. | MR | Zbl
and ,[13] On multitype branching processes with . J. Math. Anal. Appl. 19 (1967) 409-430. | MR | Zbl
and ,[14] Branching processes with immigration and related limit theorems. Theory Probab. Appl. 16 (1971) 34-51. | MR | Zbl
and ,[15] Zur Lösung einer biologischen Aufgabe. Comm. Math. Mech. Chebyshev Univ. Tomsk 2 (1938). | Zbl
,[16] Quasi-stationary distributions and the continuous-state branching process conditioned to be never extinct. Electronic Journal of Probability 12 (2007) 420-446. | MR | Zbl
,[17] Conditioned branching process and their limiting diffusions. Theory Probab. Appl. 13 (1968) 126-137. | MR | Zbl
and ,[18] Asymptotic behavior of multitype Galton-Watson processes. J. Math. Kyoto Univ. 15 (1975) 251-302. | MR | Zbl
,[19] Processus de Dawson-Watanabe conditionné par le futur lointain. C. R. Acad. Sci. Sér. I Math. 309 (1989) 867-872. | MR | Zbl
and ,[20] Non-negative matrices - An introduction to theory and applications. Halsted Press (1973). | MR | Zbl
,[21] Verzweigungsprozesse. R. Oldenbourg Verlag (1975). | MR | Zbl
,[22] Certain limit theorems of the theory of branching random processes. Doklady Akad. Nauk SSSR (N.S.) 56 (1947) 795-798. | MR | Zbl
,Cité par Sources :