Penalized nonparametric drift estimation for a continuously observed one-dimensional diffusion process
ESAIM: Probability and Statistics, Tome 15 (2011), pp. 197-216.

Let X be a one dimensional positive recurrent diffusion continuously observed on [0,t] . We consider a non parametric estimator of the drift function on a given interval. Our estimator, obtained using a penalized least square approach, belongs to a finite dimensional functional space, whose dimension is selected according to the data. The non-asymptotic risk-bound reaches the minimax optimal rate of convergence when t → ∞. The main point of our work is that we do not suppose the process to be in stationary regime neither to be exponentially β-mixing. This is possible thanks to the use of a new polynomial inequality in the ergodic theorem [E. Löcherbach, D. Loukianova and O. Loukianov, Ann. Inst. H. Poincaré Probab. Statist. 47 (2011) 425-449].

DOI : 10.1051/ps/2009016
Classification : 60F99, 60J35, 60J55, 60J60, 62G99, 62M05
Mots-clés : diffusion process, adaptive estimation, regeneration method, mean square estimator, model selection, deviation inequalities
@article{PS_2011__15__197_0,
     author = {L\"ocherbach, Eva and Loukianova, Dasha and Loukianov, Oleg},
     title = {Penalized nonparametric drift estimation for a continuously observed one-dimensional diffusion process},
     journal = {ESAIM: Probability and Statistics},
     pages = {197--216},
     publisher = {EDP-Sciences},
     volume = {15},
     year = {2011},
     doi = {10.1051/ps/2009016},
     mrnumber = {2870512},
     language = {en},
     url = {http://www.numdam.org/articles/10.1051/ps/2009016/}
}
TY  - JOUR
AU  - Löcherbach, Eva
AU  - Loukianova, Dasha
AU  - Loukianov, Oleg
TI  - Penalized nonparametric drift estimation for a continuously observed one-dimensional diffusion process
JO  - ESAIM: Probability and Statistics
PY  - 2011
SP  - 197
EP  - 216
VL  - 15
PB  - EDP-Sciences
UR  - http://www.numdam.org/articles/10.1051/ps/2009016/
DO  - 10.1051/ps/2009016
LA  - en
ID  - PS_2011__15__197_0
ER  - 
%0 Journal Article
%A Löcherbach, Eva
%A Loukianova, Dasha
%A Loukianov, Oleg
%T Penalized nonparametric drift estimation for a continuously observed one-dimensional diffusion process
%J ESAIM: Probability and Statistics
%D 2011
%P 197-216
%V 15
%I EDP-Sciences
%U http://www.numdam.org/articles/10.1051/ps/2009016/
%R 10.1051/ps/2009016
%G en
%F PS_2011__15__197_0
Löcherbach, Eva; Loukianova, Dasha; Loukianov, Oleg. Penalized nonparametric drift estimation for a continuously observed one-dimensional diffusion process. ESAIM: Probability and Statistics, Tome 15 (2011), pp. 197-216. doi : 10.1051/ps/2009016. http://www.numdam.org/articles/10.1051/ps/2009016/

[1] G. Banon, Nonparametric identification for diffusion processes. SIAM J. Control. Optim. 16 (1978) 380-395. | MR | Zbl

[2] Y. Baraud, F. Comte and G. Viennet, Adaptive estimation in autoregression or β-mixing regression via model selection. Ann. Stat. 29 (2001) 839-875. | MR | Zbl

[3] Y. Baraud, F. Comte and G. Viennet, Model selection for (auto-)regression with dependent data. ESAIM: P&S 5 (2001) 33-49. | Numdam | MR | Zbl

[4] A. Barron, L. Birgé and P. Massart, Risks bounds for model selection via penalization. Prob. Th. Rel. Fields 113 (1999) 301-413. | MR | Zbl

[5] F. Comte, V. Genon-Catalot and Y. Rozenholc, Penalized nonparametric mean square estimation of the coefficients of diffusion processes. Bernoulli 13 (2007) 514-543. | MR | Zbl

[6] A. Dalalyan, Sharp adaptive estimation of the drift function for ergodic diffusions. Ann. Stat. 33 (2005) 507-2528. | MR | Zbl

[7] A.S. Dalalyan and Yu.A. Kutoyants, Asymptotically efficient trend coefficient estimation for ergodic diffusion. Math. Meth. Stat. 11 (2002) 402-427. | MR

[8] S. Delattre, M. Hoffmann and M. Kessler, Dynamics adaptive estimation of a scalar diffusion. Prpublication PMA-762, Univ. Paris 6 (2002). Available at www.proba.jussieu.fr/mathdoc/preprints/. Mathematical Reviews (MathSciNet): MR1895888 Project Euclid: euclid.bj/1078866865. | MR

[9] L. Galtchouk and S. Pergamenschikov, Sequential nonparametric adaptive estimation of the drift coefficient in the diffusion processes. Math. Meth. Stat. 10 (2001) 316-330. | MR | Zbl

[10] M. Hoffmann, Adaptive estimation in diffusion processes. Stochastic Processes Appl. 79 (1999) 135-163. | MR | Zbl

[11] Yury A. Kutoyants, Statistical inference for ergodic diffusion processes. Springer Series in Statistics. London: Springer (2004). | MR | Zbl

[12] O. Lepskii, One problem of adaptive estimation in Gaussian white noise. Theory Probab. Appl. 35 (1999) 459-470. | MR | Zbl

[13] G.G. Lorentz, M. Von Golitschek and Y. Makovoz, Constructive approximation: advanced problems. Grundlehren der Mathematischen Wissenschaften 304. Berlin: Springer (1996). | MR | Zbl

[14] D. Loukianova and O. Loukianov, Uniform deterministic equivalent of additive functionals and non-parametric drift estimation for one-dimensional recurrent diffusions. Ann. Inst. Henri Poincaré 44 (2008) 771-786. | Numdam | MR | Zbl

[15] E. Löcherbach and D. Loukianova, On Nummelin splitting for continuous time Harris recurrent Markov processes and application to kernel estimation for multi-dimensional diffusions. Stoch. Proc. Appl. 118 (2008) 301-1321. | MR | Zbl

[16] E. Löcherbach, D. Loukianova and O. Loukianov, Polynomial bounds in the Ergodic theorem for one-dimensional diffusions and integrability of hitting times. Ann. Inst. H. Poincaré Probab. Statist. 47 (2011) 425-449. | Numdam | MR | Zbl

[17] T.D. Pham, Nonparametric estimation of the drift coefficient in the diffusion equation. Math. Operationsforsch. Statist., Ser. Statistics 1 (1981) 61-73. | MR | Zbl

[18] B.L.S. Prakasa Rao, Statistical Inference for Diffusion Type Processes. London: Edward Arnold. MR1717690 (1999) | MR | Zbl

[19] D. Revuz and M. Yor, Continuous martingales and Brownian motion. 3rd ed. Grundlehren der Mathematischen Wissenschaften 293. Berlin: Springer (2005). | Zbl

[20] V.G. Spokoiny, Adaptive drift estimation for nonparametric diffusion model. Ann. Stat. 28 (2000) 815-836. | MR | Zbl

[21] A.Yu. Veretennikov, On polynomial mixing bounds for stochastic differential equations. Stoch. Proc. Appl. 70 (1997) 115-127. | MR | Zbl

Cité par Sources :