Let Tn be a Studentized U-statistic. It is proved that a Cramér type moderate deviation P(Tn ≥ x)/(1 - Φ(x)) → 1 holds uniformly in x ∈ [0, o(n1/6)) when the kernel satisfies some regular conditions.
Mots-clés : moderate deviation, u-statistic, studentized
@article{PS_2011__15__168_0, author = {Lai, Tze Leng and Shao, Qi-Man and Wang, Qiying}, title = {Cram\'er type moderate deviations for {Studentized} {U-statistics}}, journal = {ESAIM: Probability and Statistics}, pages = {168--179}, publisher = {EDP-Sciences}, volume = {15}, year = {2011}, doi = {10.1051/ps/2009014}, mrnumber = {2870510}, zbl = {1271.60044}, language = {en}, url = {http://www.numdam.org/articles/10.1051/ps/2009014/} }
TY - JOUR AU - Lai, Tze Leng AU - Shao, Qi-Man AU - Wang, Qiying TI - Cramér type moderate deviations for Studentized U-statistics JO - ESAIM: Probability and Statistics PY - 2011 SP - 168 EP - 179 VL - 15 PB - EDP-Sciences UR - http://www.numdam.org/articles/10.1051/ps/2009014/ DO - 10.1051/ps/2009014 LA - en ID - PS_2011__15__168_0 ER -
%0 Journal Article %A Lai, Tze Leng %A Shao, Qi-Man %A Wang, Qiying %T Cramér type moderate deviations for Studentized U-statistics %J ESAIM: Probability and Statistics %D 2011 %P 168-179 %V 15 %I EDP-Sciences %U http://www.numdam.org/articles/10.1051/ps/2009014/ %R 10.1051/ps/2009014 %G en %F PS_2011__15__168_0
Lai, Tze Leng; Shao, Qi-Man; Wang, Qiying. Cramér type moderate deviations for Studentized U-statistics. ESAIM: Probability and Statistics, Tome 15 (2011), pp. 168-179. doi : 10.1051/ps/2009014. http://www.numdam.org/articles/10.1051/ps/2009014/
[1] Berry-Esseen bounds for von-Mises and U-statistics. Lith. Math. J. 41 (2001) 1-16. | MR | Zbl
and ,[2] Lyapunov type bounds for U-statistics. Theory Probab. Appl. 46 (2002) 571-588. | MR | Zbl
and ,[3] Jackknifing U-statistics. Ann. Math. Statist. 40 (1969) 2076-2100. | MR | Zbl
,[4] Large deviations of U-statistics I. Lietuvos Matematikos Rinkinys 43 (2003) 13-37. | MR | Zbl
and ,[5] Large deviations of U-statistics I. Lietuvos Matematikos Rinkinys 43 (2003) 294-316. | MR | Zbl
and ,[6] The order of the normal approximation for a studentized U-statistics. Ann. Statist. 9 (1981) 194-200. | MR | Zbl
and ,[7] A class of statistics with asymptotically normal distribution. Ann. Math. Statist. 19 (1948) 293-325. | MR | Zbl
,[8] Self-normalized Cramér-type large deviation for independent random variables. Ann. Probab. 31 (2003) 2167-2215. | MR | Zbl
, and ,[9] Saddlepoint approximation for Student's t-statistic with no moment conditions. Ann. Statist. 32 (2004) 2679-2711. | MR | Zbl
, , ,[10] Theory of U-statistics. Kluwer Academic Publishers, Dordrecht (1994). | MR | Zbl
and ,[11] Self-normalized large deviations. Ann. Probab. 25 (1997) 285-328. | MR | Zbl
,[12] Cramér-type large deviation for Student's t statistic. J. Theorect. Probab. 12 (1999) 387-398. | MR | Zbl
,[13] Self-normalized processes: exponential inequalities, moment bound and iterated logarithm laws. Ann. Probab. 32 (2004) 1902-1933. | MR | Zbl
, and ,[14] Cramer type large deviations for studentized U-statistics. Metrika 32 (1985) 165-180. | MR | Zbl
and ,[15] Bernstein type inequalities for degenerate U-statistics with applications. Ann. Math. Ser. B 19 (1998) 157-166. | MR | Zbl
,[16] The Berry-Esséen bound for studentized statistics. Ann. Probab. 28 (2000) 511-535. | MR | Zbl
, and ,[17] Exact convergence rate and leading term in the central limit theorem for U-statistics. Statist. Sinica 16 (2006) 1409-1422. | MR | Zbl
and ,[18] The rate of the normal approximation for a studentized U-statistic. Science Exploration 3 (1983) 45-52. | MR | Zbl
,Cité par Sources :