SURE shrinkage of gaussian paths and signal identification
ESAIM: Probability and Statistics, Tome 15 (2011), pp. 180-196.

Using integration by parts on Gaussian space we construct a Stein Unbiased Risk Estimator (SURE) for the drift of Gaussian processes, based on their local and occupation times. By almost-sure minimization of the SURE risk of shrinkage estimators we derive an estimation and de-noising procedure for an input signal perturbed by a continuous-time Gaussian noise.

DOI : 10.1051/ps/2009013
Classification : 93E10, 93E14, 60G35, 60H07
Mots clés : estimation, sure shrinkage, thresholding, denoising, gaussian processes, Malliavin calculus
@article{PS_2011__15__180_0,
     author = {Privault, Nicolas and R\'eveillac, Anthony},
     title = {SURE shrinkage of gaussian paths and signal identification},
     journal = {ESAIM: Probability and Statistics},
     pages = {180--196},
     publisher = {EDP-Sciences},
     volume = {15},
     year = {2011},
     doi = {10.1051/ps/2009013},
     mrnumber = {2870511},
     zbl = {1261.93078},
     language = {en},
     url = {http://www.numdam.org/articles/10.1051/ps/2009013/}
}
TY  - JOUR
AU  - Privault, Nicolas
AU  - Réveillac, Anthony
TI  - SURE shrinkage of gaussian paths and signal identification
JO  - ESAIM: Probability and Statistics
PY  - 2011
SP  - 180
EP  - 196
VL  - 15
PB  - EDP-Sciences
UR  - http://www.numdam.org/articles/10.1051/ps/2009013/
DO  - 10.1051/ps/2009013
LA  - en
ID  - PS_2011__15__180_0
ER  - 
%0 Journal Article
%A Privault, Nicolas
%A Réveillac, Anthony
%T SURE shrinkage of gaussian paths and signal identification
%J ESAIM: Probability and Statistics
%D 2011
%P 180-196
%V 15
%I EDP-Sciences
%U http://www.numdam.org/articles/10.1051/ps/2009013/
%R 10.1051/ps/2009013
%G en
%F PS_2011__15__180_0
Privault, Nicolas; Réveillac, Anthony. SURE shrinkage of gaussian paths and signal identification. ESAIM: Probability and Statistics, Tome 15 (2011), pp. 180-196. doi : 10.1051/ps/2009013. http://www.numdam.org/articles/10.1051/ps/2009013/

[1] J.M. Azaïs and M. Wschebor, Level Sets and Extrema of Random Processes and Fields. Wiley, Hoboken (2009). | MR | Zbl

[2] E.N. Belitser and B.Y. Levit, On minimax filtering over ellipsoids. Math. Methods Statist. 4 (1995) 259-273. | MR | Zbl

[3] S.M. Berman, Local times and sample function properties of stationary Gaussian processes. Trans. Amer. Math. Soc. 137 (1969) 277-299. | MR | Zbl

[4] J. Cuzick, Boundary crossing probabilities for stationary Gaussian processes and Brownian motion. Trans. Amer. Math. Soc. 263 (1981) 469-492. | MR | Zbl

[5] D.L. Donoho and I.M. Johnstone, Ideal spatial adaptation by wavelet shrinkage. Biometrika 81 (1994) 425-455. | MR | Zbl

[6] D.L. Donoho and I.M. Johnstone, Adapting to unknown smoothness via wavelet shrinkage. J. Amer. Statist. Assoc. 90 (1995) 1200-1224. | MR | Zbl

[7] D. Geman and J. Horowitz, Occupation densities. Ann. Probab. 8 (1980) 1-67. | MR | Zbl

[8] G.K. Golubev, Minimax filtration of functions in L2. Probl. Inf. Transm. 18 (1982) 272-278. | MR | Zbl

[9] D. Nualart, The Malliavin calculus and related topics. Probability and its Applications. Springer-Verlag, Berlin, second edition (2006). | MR | Zbl

[10] M. Nussbaum, Minimax risk, Pinsker bound, in Encyclopedia of Statistical Sciences, S. Kotz Ed. Wiley, New York (1999).

[11] J. Pickands, Upcrossing probabilities for stationary Gaussian processes. Trans. Amer. Math. Soc. 145 (1969) 51-73. | MR | Zbl

[12] M.S. Pinsker, Optimal filtration of square-integrable signals in Gaussian noise. Probl. Inf. Transm. 16 (1980) 52-68. | MR | Zbl

[13] H.V. Poor, An introduction to signal detection and estimation. Springer Texts in Electrical Engineering. Springer-Verlag, New York, second edition (1994). | MR | Zbl

[14] N. Privault and A. Réveillac, Superefficient drift estimation on the Wiener space. C. R. Acad. Sci. Paris Sér. I Math. 343 (2006) 607-612. | MR | Zbl

[15] N. Privault and A. Réveillac, Stein estimation for the drift of Gaussian processes using the Malliavin calculus. Ann. Stat. 35 (2008) 2531-2550. | MR | Zbl

[16] N. Privault and A. Réveillac, Stein estimation of Poisson process intensities. Stat. Inference Stoch. Process. 12 (2009) 37-53. | MR | Zbl

[17] C. Qualls and H. Watanabe, Asymptotic properties of Gaussian processes. Ann. Math. Statist. 43 (1972) 580-596. | MR | Zbl

[18] D. Revuz and M. Yor, Continuous martingales and Brownian motion, Vol. 293 of Grundlehren der Mathematischen Wissenschaften. Springer-Verlag, Berlin, third edition (1999). | MR | Zbl

[19] C. Stein, Estimation of the mean of a multivariate normal distribution. Ann. Stat. 9 (1981) 1135-1151. | MR | Zbl

[20] M. Weber, The supremum of Gaussian processes with a constant variance. Prob. Th. Rel. Fields 81 (1989) 585-591. | MR | Zbl

Cité par Sources :