A new stochastic restricted biased estimator under heteroscedastic or correlated error
ESAIM: Probability and Statistics, Tome 15 (2011), pp. 30-40.

In this paper, under the linear regression model with heteroscedastic and/or correlated errors when the stochastic linear restrictions on the parameter vector are assumed to be held, a generalization of the ordinary mixed estimator (GOME), ordinary ridge regression estimator (GORR) and Generalized least squares estimator (GLSE) is proposed. The performance of this new estimator against GOME, GORR, GLS and the stochastic restricted Liu estimator (SRLE) [Yang and Xu, Statist. Papers 50 (2007) 639-647] are examined in terms of matrix mean square error criterion. A numerical example is considered to illustrate the theoretical results.

DOI : 10.1051/ps/2009009
Classification : 62J05, 62J07
Mots-clés : heteroscedasticity, generalized least squares estimator, stochastic restricted Liu estimator
@article{PS_2011__15__30_0,
     author = {Alheety, Mustafa Ismaeel},
     title = {A new stochastic restricted biased estimator under heteroscedastic or correlated error},
     journal = {ESAIM: Probability and Statistics},
     pages = {30--40},
     publisher = {EDP-Sciences},
     volume = {15},
     year = {2011},
     doi = {10.1051/ps/2009009},
     mrnumber = {2793048},
     language = {en},
     url = {http://www.numdam.org/articles/10.1051/ps/2009009/}
}
TY  - JOUR
AU  - Alheety, Mustafa Ismaeel
TI  - A new stochastic restricted biased estimator under heteroscedastic or correlated error
JO  - ESAIM: Probability and Statistics
PY  - 2011
SP  - 30
EP  - 40
VL  - 15
PB  - EDP-Sciences
UR  - http://www.numdam.org/articles/10.1051/ps/2009009/
DO  - 10.1051/ps/2009009
LA  - en
ID  - PS_2011__15__30_0
ER  - 
%0 Journal Article
%A Alheety, Mustafa Ismaeel
%T A new stochastic restricted biased estimator under heteroscedastic or correlated error
%J ESAIM: Probability and Statistics
%D 2011
%P 30-40
%V 15
%I EDP-Sciences
%U http://www.numdam.org/articles/10.1051/ps/2009009/
%R 10.1051/ps/2009009
%G en
%F PS_2011__15__30_0
Alheety, Mustafa Ismaeel. A new stochastic restricted biased estimator under heteroscedastic or correlated error. ESAIM: Probability and Statistics, Tome 15 (2011), pp. 30-40. doi : 10.1051/ps/2009009. http://www.numdam.org/articles/10.1051/ps/2009009/

[1] G.M. Bayhan and M. Bayhan, Forcasting using autocorrelated errors and multicollinear predictor variables. Comput. Ind. Eng. 34 (1998) 413-421.

[2] R.W. Farebrother, Fruther results on the mean square error of ridge regression. J. R. Stat. Soc. B 38 (1976) 284-250. | MR | Zbl

[3] L. Firinguetti, A simulation study of ridge regression estimators with autocorrelated errors. Commun. Stat. Simul. 18 (1989) 673-702. | MR | Zbl

[4] A.E. Hoerl and R.W. Kennard, Ridge Regression: Biased estimation for non-orthogonal problem. Technometrics 12 (1970) 55-67. | Zbl

[5] A.E. Hoerl and R.W. Kennard, Ridge Regression: Application for non-orthogonal problem. Technometrics 12 (1970) 69-82. | Zbl

[6] M.H. Hubert and P. Wijekoon, Improvement of the Liu estimator in linear regression model. Statist. Papers 47 (2006) 471-479. | MR | Zbl

[7] K. Liu, A new class of biased estimate in linear regression. Commun. Stat. - Theory Meth. 22 (1993) 393-402. | MR | Zbl

[8] C.R. Rao, Linear Statistics Inference and its applications. Second edn. John Wiley and Sons (1973). | MR | Zbl

[9] C.R. Rao, H. Toubtenburg and S.C. Heumann, Linear Models and Generalizations: Least squares and alternatives. Springer Ser. Statist. Springer-Verlag, New York (2008). | MR | Zbl

[10] C. Stein, Inadmissibility of the usual estimator for the mean of a multivariate normal distribution, in Proc. Third Berkeley Symp. on Mathematics, Statistics and Probability. Universiy of California, Berkeley, 1956, pp. 197-206. | MR | Zbl

[11] H. Theil, On the use of incomplete prior information in regression analysis. J. Am. Stat. Assoc. 58 (1963) 401-414. | MR | Zbl

[12] H. Theil and A.S. Goldberger, On pure and mixed estimation in econometrics. Int. Econ. Rev. 2 (1961) 65-78.

[13] G. Trenkler, On the performance of biased estimators in the linear regression model with correlated or heteroscedastic errors. J. Econometrics 25 (1984) 179-190. | MR | Zbl

[14] H. Yang and J. Xu, An alternative stochastic restricted Liu estimator in linear regression. Statist. Papers 50 (2007) 639-647. | MR

Cité par Sources :