Inner products in covolume and mimetic methods
ESAIM: Modélisation mathématique et analyse numérique, Tome 42 (2008) no. 6, pp. 941-959.

A class of compatible spatial discretizations for solving partial differential equations is presented. A discrete exact sequence framework is developed to classify these methods which include the mimetic and the covolume methods as well as certain low-order finite element methods. This construction ensures discrete analogs of the differential operators that satisfy the identities and theorems of vector calculus, in particular a Helmholtz decomposition theorem for the discrete function spaces. This paper demonstrates that these methods differ only in their choice of discrete inner product. Finally, certain uniqueness results for the covolume inner product are shown.

DOI : 10.1051/m2an:2008030
Classification : 65N06
Mots clés : compatible discretization, discrete Helmholtz orthogonality, discrete exact sequence, mimetic method, covolume method
@article{M2AN_2008__42_6_941_0,
     author = {Trapp, Kathryn A.},
     title = {Inner products in covolume and mimetic methods},
     journal = {ESAIM: Mod\'elisation math\'ematique et analyse num\'erique},
     pages = {941--959},
     publisher = {EDP-Sciences},
     volume = {42},
     number = {6},
     year = {2008},
     doi = {10.1051/m2an:2008030},
     mrnumber = {2473315},
     zbl = {1155.65103},
     language = {en},
     url = {http://www.numdam.org/articles/10.1051/m2an:2008030/}
}
TY  - JOUR
AU  - Trapp, Kathryn A.
TI  - Inner products in covolume and mimetic methods
JO  - ESAIM: Modélisation mathématique et analyse numérique
PY  - 2008
SP  - 941
EP  - 959
VL  - 42
IS  - 6
PB  - EDP-Sciences
UR  - http://www.numdam.org/articles/10.1051/m2an:2008030/
DO  - 10.1051/m2an:2008030
LA  - en
ID  - M2AN_2008__42_6_941_0
ER  - 
%0 Journal Article
%A Trapp, Kathryn A.
%T Inner products in covolume and mimetic methods
%J ESAIM: Modélisation mathématique et analyse numérique
%D 2008
%P 941-959
%V 42
%N 6
%I EDP-Sciences
%U http://www.numdam.org/articles/10.1051/m2an:2008030/
%R 10.1051/m2an:2008030
%G en
%F M2AN_2008__42_6_941_0
Trapp, Kathryn A. Inner products in covolume and mimetic methods. ESAIM: Modélisation mathématique et analyse numérique, Tome 42 (2008) no. 6, pp. 941-959. doi : 10.1051/m2an:2008030. http://www.numdam.org/articles/10.1051/m2an:2008030/

[1] D.N. Arnold, Differential complexes and numerical stability, in Proceedings of the International Congress of Mathematicians, Vol. I, Higher Ed. Press, Beijing (2002) 137-157. | MR | Zbl

[2] M. Berndt, K. Lipnikov, D. Moulton and M. Shashkov, Convergence of mimetic finite difference discretizations of the diffusion equation. East-West J. Numer. Math 9 (2001) 253-316. | MR | Zbl

[3] P. Bochev and J.M. Hyman, Principles of mimetic discretizations of differential operators, in Compatible Spatial Discretizations, D. Arnold, P. Bochev, R. Lehoucq, R. Nicolaides and M. Shashkov Eds., IMA Volumes in Mathematics and its Applications 142, Springer, New York (2006). | MR | Zbl

[4] A. Bossavit, Generating whitney forms of polynomial degree one and higher. IEEE Trans. Magn. 38 (2002) 341-344.

[5] R. Hiptmair, Canonical construction of finite elements. Math. Comp. 68 (1999) 1325-1346. | MR | Zbl

[6] A. Hirani, Discrete Exterior Calculus. Ph.D. thesis, California Institute of Technology, USA (2003).

[7] J.M. Hyman and M. Shashkov, The adjoint operators for the natural discretizations for the divergence, gradient, and curl on logically rectangular grids. IMACS J. Appl. Num. Math. 25 (1997) 1-30. | MR | Zbl

[8] J.M. Hyman and M. Shashkov, Natural discretizations for the divergence, gradient, and curl on logically rectangular grids. Comput. Math. Appl. 33 (1997) 81-104. | MR | Zbl

[9] J.M. Hyman and M. Shashkov, Mimetic discretizations for Maxwell's equations. J. Comp. Phys. 151 (1999) 881-909. | MR | Zbl

[10] J.M. Hyman and M. Shashkov, The orthogonal decomposition theorems for mimetic finite difference methods. SIAM J. Numer. Anal. 36 (1999) 788-818. | MR | Zbl

[11] J.C. Nedelec, Mixed finite elements in 3 . Numer. Math. 35 (1980) 315-341. | EuDML | MR | Zbl

[12] J.C. Nedelec, A new family of mixed finite elements in 3 . Numer. Math. 50 (1986) 57-81. | EuDML | MR | Zbl

[13] R.A. Nicolaides, Direct discretization of planar div-curl problems. SIAM J. Numer. Anal. 29 (1992) 32-56. | MR | Zbl

[14] R. Nicolaides and K. Trapp, Covolume discretizations of differential forms, in Compatible Spatial Discretizations, D. Arnold, P. Bochev, R. Lehoucq, R. Nicolaides and M. Shashkov Eds., IMA Volumes in Mathematics and its Applications 142, Springer, New York (2006). | MR | Zbl

[15] R.A. Nicolaides and D.Q. Wang, Convergence analysis of a covolume scheme for Maxwell's equations in three dimensions. Math. Comp. 67 (1998) 947-963. | MR | Zbl

[16] R.A. Nicolaides and X. Wu, Covolume solutions of three-dimensional div-curl equations. SIAM J. Numer. Anal. 34 (1997) 2195-2203. | MR | Zbl

[17] P.A. Raviart and J.M. Thomas, A mixed finite elemnt method for second order elliptic problems, in Springer Lecture Notes in Mathematics 606, Springer-Verlag (1977) 292-315. | MR | Zbl

[18] K. Trapp, A Class of Compatible Discretizations with Applications to Div-Curl Systems. Ph.D. thesis, Carnegie Mellon University, USA (2004).

Cité par Sources :