We prove stability and derive error estimates for the recently introduced central discontinuous Galerkin method, in the context of linear hyperbolic equations with possibly discontinuous solutions. A comparison between the central discontinuous Galerkin method and the regular discontinuous Galerkin method in this context is also made. Numerical experiments are provided to validate the quantitative conclusions from the analysis.
Mots-clés : central discontinuous Galerkin method, discontinuous Galerkin method, linear hyperbolic equation, stability, error estimate
@article{M2AN_2008__42_4_593_0, author = {Liu, Yingjie and Shu, Chi-Wang and Tadmor, Eitan and Zhang, Mengping}, title = {$L^2$ stability analysis of the central discontinuous {Galerkin} method and a comparison between the central and regular discontinuous {Galerkin} methods}, journal = {ESAIM: Mod\'elisation math\'ematique et analyse num\'erique}, pages = {593--607}, publisher = {EDP-Sciences}, volume = {42}, number = {4}, year = {2008}, doi = {10.1051/m2an:2008018}, mrnumber = {2437775}, zbl = {1152.65095}, language = {en}, url = {http://www.numdam.org/articles/10.1051/m2an:2008018/} }
TY - JOUR AU - Liu, Yingjie AU - Shu, Chi-Wang AU - Tadmor, Eitan AU - Zhang, Mengping TI - $L^2$ stability analysis of the central discontinuous Galerkin method and a comparison between the central and regular discontinuous Galerkin methods JO - ESAIM: Modélisation mathématique et analyse numérique PY - 2008 SP - 593 EP - 607 VL - 42 IS - 4 PB - EDP-Sciences UR - http://www.numdam.org/articles/10.1051/m2an:2008018/ DO - 10.1051/m2an:2008018 LA - en ID - M2AN_2008__42_4_593_0 ER -
%0 Journal Article %A Liu, Yingjie %A Shu, Chi-Wang %A Tadmor, Eitan %A Zhang, Mengping %T $L^2$ stability analysis of the central discontinuous Galerkin method and a comparison between the central and regular discontinuous Galerkin methods %J ESAIM: Modélisation mathématique et analyse numérique %D 2008 %P 593-607 %V 42 %N 4 %I EDP-Sciences %U http://www.numdam.org/articles/10.1051/m2an:2008018/ %R 10.1051/m2an:2008018 %G en %F M2AN_2008__42_4_593_0
Liu, Yingjie; Shu, Chi-Wang; Tadmor, Eitan; Zhang, Mengping. $L^2$ stability analysis of the central discontinuous Galerkin method and a comparison between the central and regular discontinuous Galerkin methods. ESAIM: Modélisation mathématique et analyse numérique, Tome 42 (2008) no. 4, pp. 593-607. doi : 10.1051/m2an:2008018. http://www.numdam.org/articles/10.1051/m2an:2008018/
[1] The Finite Element Method for Elliptic Problem. North Holland (1975). | MR | Zbl
,[2] TVB Runge-Kutta local projection discontinuous Galerkin finite element method for conservation laws II: general framework. Math. Comput. 52 (1989) 411-435. | MR | Zbl
and ,[3] The local discontinuous Galerkin method for time-dependent convection-diffusion systems. SIAM J. Numer. Anal. 35 (1998) 2440-2463. | MR | Zbl
and ,[4] Runge-Kutta discontinuous Galerkin methods for convection-dominated problems. J. Sci. Comput. 16 (2001) 173-261. | MR | Zbl
and ,[5] Strong stability-preserving high-order time discretization methods. SIAM Rev. 43 (2001) 89-112. | MR | Zbl
, and ,[6] On a cell entropy inequality for discontinuous Galerkin methods. Math. Comput. 62 (1994) 531-538. | MR | Zbl
and ,[7] Central schemes on overlapping cells. J. Comput. Phys. 209 (2005) 82-104. | MR | Zbl
,[8] Central discontinuous Galerkin methods on overlapping cells with a non-oscillatory hierarchical reconstruction. SIAM J. Numer. Anal. 45 (2007) 2442-2467. | MR | Zbl
, , and ,[9] Non-oscillatory central differencing for hyperbolic conservation laws. J. Comput. Phys. 87 (1990) 408-463. | MR | Zbl
and ,[10] A numerical study for the performance of the Runge-Kutta discontinuous Galerkin method based on different numerical fluxes. J. Comput. Phys. 212 (2006) 540-565. | MR | Zbl
, and ,[11] Efficient implementation of essentially non-oscillatory shock-capturing schemes. J. Comput. Phys. 77 (1988) 439-471. | MR | Zbl
and ,[12] An analysis of three different formulations of the discontinuous Galerkin method for diffusion equations. Math. Models Methods Appl. Sci. 13 (2003) 395-413. | MR | Zbl
and ,[13] An analysis of and a comparison between the discontinuous Galerkin and the spectral finite volume methods. Comput. Fluids 34 (2005) 581-592. | Zbl
and ,Cité par Sources :