In this paper we introduce a new class of numerical schemes for the incompressible Navier-Stokes equations, which are inspired by the theory of discrete kinetic schemes for compressible fluids. For these approximations it is possible to give a stability condition, based on a discrete velocities version of the Boltzmann H-theorem. Numerical tests are performed to investigate their convergence and accuracy.
Mots clés : incompressible fluids, kinetic schemes, BGK models, finite difference schemes
@article{M2AN_2008__42_1_93_0, author = {Carfora, Maria Francesca and Natalini, Roberto}, title = {A discrete kinetic approximation for the incompressible {Navier-Stokes} equations}, journal = {ESAIM: Mod\'elisation math\'ematique et analyse num\'erique}, pages = {93--112}, publisher = {EDP-Sciences}, volume = {42}, number = {1}, year = {2008}, doi = {10.1051/m2an:2007055}, mrnumber = {2387423}, zbl = {1135.76037}, language = {en}, url = {http://www.numdam.org/articles/10.1051/m2an:2007055/} }
TY - JOUR AU - Carfora, Maria Francesca AU - Natalini, Roberto TI - A discrete kinetic approximation for the incompressible Navier-Stokes equations JO - ESAIM: Modélisation mathématique et analyse numérique PY - 2008 SP - 93 EP - 112 VL - 42 IS - 1 PB - EDP-Sciences UR - http://www.numdam.org/articles/10.1051/m2an:2007055/ DO - 10.1051/m2an:2007055 LA - en ID - M2AN_2008__42_1_93_0 ER -
%0 Journal Article %A Carfora, Maria Francesca %A Natalini, Roberto %T A discrete kinetic approximation for the incompressible Navier-Stokes equations %J ESAIM: Modélisation mathématique et analyse numérique %D 2008 %P 93-112 %V 42 %N 1 %I EDP-Sciences %U http://www.numdam.org/articles/10.1051/m2an:2007055/ %R 10.1051/m2an:2007055 %G en %F M2AN_2008__42_1_93_0
Carfora, Maria Francesca; Natalini, Roberto. A discrete kinetic approximation for the incompressible Navier-Stokes equations. ESAIM: Modélisation mathématique et analyse numérique, Tome 42 (2008) no. 1, pp. 93-112. doi : 10.1051/m2an:2007055. http://www.numdam.org/articles/10.1051/m2an:2007055/
[1] Discrete kinetic schemes for multidimensional systems of conservation laws. SIAM J. Numer. Anal. 37 (2000) 1973-2004. | MR | Zbl
and ,[2] Explicit diffusive kinetic schemes for nonlinear degenerate parabolic systems. Math. Comp. 73 (2004) 63-94. | MR | Zbl
, and ,[3] Compressible and incompressible limits for hyperbolic systems with relaxation. J. Comput. Appl. Math. 168 (2004) 41-52. | MR | Zbl
, , and ,[4] Hyperbolic limit of the Jin-Xin relaxation model. Comm. Pure Appl. Math. 59 (2006) 688-753. | MR | Zbl
,[5] On a relaxation approximation of the incompressible Navier-Stokes equations. Proc. Amer. Math. Soc. 132 (2004) 1021-1028. | MR | Zbl
, and ,[6] Galilean-invariant Lattice-Boltzmann models with H theorem. Phys. Rev. E 68 (2003) 25103-25106.
, , , , and ,[7] Construction of BGK models with a family of kinetic entropies for a given system of conservation laws. J. Statist. Phys. 95 (1999) 113-170. | MR | Zbl
,[8] Entropy satisfying flux vector splittings and kinetic BGK models. Numer. Math. 94 (2003) 623-672. | MR | Zbl
,[9] Nonlinear stability of finite volume methods for hyperbolic conservation laws, and well-balanced schemes for sources, Frontiers in Mathematics series. Birkhäuser (2004). | MR | Zbl
,[10] Numerical solution of the Navier-Stokes equations. Math. Comput. 22 (1968) 745-762. | MR | Zbl
,[11] Convergence of singular limits for multi-D semilinear hyperbolic systems to parabolic systems. Trans. Amer. Math. Soc. 356 (2004) 2093-2121. | MR | Zbl
and ,[12] W. E and J.G. Liu, Projection method. I. Convergence and numerical boundary layers. SIAM J. Numer. Anal. 32 (1995) 1017-1057; Projection method. II. Godunov-Ryabenki analysis. SIAM J. Numer. Anal. 33 (1996) 1597-1621. | MR | Zbl
[13] Second-order convergence of a projection scheme for the incompressible Navier-Stokes equations with boundaries. SIAM J. Numer. Anal. 30 (1993) 609-629. | MR | Zbl
and ,[14] Kinetic schemes in the case of low Mach numbers. J. Comput. Phys. 151 (1999) 947-968. | MR | Zbl
,[15] Discretization for the incompressible Navier-Stokes equations based on the Lattice Boltzmann method. SIAM J. Sci. Comp. 22 (2000) 1-19. | MR | Zbl
and ,[16] Rigorous Navier-Stokes limit of the Lattice Boltzmann equation. Asymptot. Anal. 35 (2003) 165-185. | MR | Zbl
and ,[17] Application of a fractional-step method to incompressible Navier-Stokes. J. Comput. Phys. 59 (1985) 308-323. | MR | Zbl
and ,[18] A discrete kinetic approximation of entropy solutions to multidimensional scalar conservation laws. J. Diff. Equation 148 (1998) 292-317. | MR | Zbl
,[19] Convergence of a singular Euler-Poisson approximation of the incompressible Navier-Stokes equations. Proc. Am. Math. Soc. 134 (2006) 2251-2258. | MR
and ,[20] Kinetic formulation of conservation laws, Oxford Lecture Series in Mathematics and its Applications 21. Oxford University Press, Oxford (2002). | MR | Zbl
,[21] Accuracy of discrete velocity BGK models for the simulation of the incompressible Navier-Stokes equations. Comput. Fluids 24 (1995) 459-467. | MR | Zbl
and ,[22] The Lattice Boltzmann Equation. Oxford University Press, Oxford (2001). | MR
,[23] Sur l'approximation de la solution des équations de Navier-Stokes par la méthode des pas fractionnaires. I. Arch. Ration. Mech. Anal. 32 (1969) 135-153; Sur l'approximation de la solution des équations de Navier-Stokes par la méthode des pas fractionnaires. II. Arch. Ration. Mech. Anal. 33 (1969) 377-385. | MR | Zbl
,[24] Analysis of the spatial error for a class of finite difference methods for viscous incompressible flow. SIAM J. Numer. Anal. 34 (1997) 723-755; Error analysis for Chorin's original fully discrete projection method and regularizations in space and time. SIAM J. Numer. Anal. 34 (1997) 1683-1697. | MR | Zbl
,[25] Lattice-gas cellular automata and Lattice Boltzmann models. An introduction, Lecture Notes in Mathematics 1725. Springer-Verlag, Berlin (2000). | MR | Zbl
,Cité par Sources :