Low order edge elements are widely used for electromagnetic field problems. Higher order edge approximations are receiving increasing interest but their definition become rather complex. In this paper we propose a simple definition for Whitney edge elements of polynomial degree higher than one. We give a geometrical localization of all degrees of freedom over particular edges and provide a basis for these elements on simplicial meshes. As for Whitney edge elements of degree one, the basis is expressed only in terms of the barycentric coordinates of the simplex.
Mots clés : Maxwell equations, higher order edge elements, simplicial meshes
@article{M2AN_2007__41_6_1001_0, author = {Rapetti, Francesca}, title = {High order edge elements on simplicial meshes}, journal = {ESAIM: Mod\'elisation math\'ematique et analyse num\'erique}, pages = {1001--1020}, publisher = {EDP-Sciences}, volume = {41}, number = {6}, year = {2007}, doi = {10.1051/m2an:2007049}, mrnumber = {2377104}, zbl = {1141.78014}, language = {en}, url = {http://www.numdam.org/articles/10.1051/m2an:2007049/} }
TY - JOUR AU - Rapetti, Francesca TI - High order edge elements on simplicial meshes JO - ESAIM: Modélisation mathématique et analyse numérique PY - 2007 SP - 1001 EP - 1020 VL - 41 IS - 6 PB - EDP-Sciences UR - http://www.numdam.org/articles/10.1051/m2an:2007049/ DO - 10.1051/m2an:2007049 LA - en ID - M2AN_2007__41_6_1001_0 ER -
%0 Journal Article %A Rapetti, Francesca %T High order edge elements on simplicial meshes %J ESAIM: Modélisation mathématique et analyse numérique %D 2007 %P 1001-1020 %V 41 %N 6 %I EDP-Sciences %U http://www.numdam.org/articles/10.1051/m2an:2007049/ %R 10.1051/m2an:2007049 %G en %F M2AN_2007__41_6_1001_0
Rapetti, Francesca. High order edge elements on simplicial meshes. ESAIM: Modélisation mathématique et analyse numérique, Tome 41 (2007) no. 6, pp. 1001-1020. doi : 10.1051/m2an:2007049. http://www.numdam.org/articles/10.1051/m2an:2007049/
[1] Dispersive properties of high order Nédélec/edge element approximation of the time-harmonic Maxwell equations. Philos. Trans. R. Soc. Lond. Ser. A Math. Phys. Eng. Sci. 362 (2004) 471-491. | Zbl
,[2] Hierarchic finite element bases on unstructured tetrahedral meshes. Int. J. Numer. Meth. Engng. 58 (2003) 2103-2130. | Zbl
and ,[3] Computation of Maxwell eigenvalues using higher order edge elements in three-dimensions. IEEE Trans. Magn. 39 (2003) 2149-2153.
, , and ,[4] Basic Topology. Springer-Verlag, New York (1983). | MR | Zbl
,[5] Finite element exterior calculus, homological techniques, and applications. Acta Numer. 15 (2006) 1-155.
, and ,[6] Discrete compactness for the version of rectangular edge finite elements. ICES Report 04-29 (2004). | Zbl
, , and ,[7] Computational Electromagnetism. Academic Press, New York (1998). | MR | Zbl
,[8] Generating Whitney forms of polynomial degree one and higher. IEEE Trans. Magn. 38 (2002) 341-344.
,[9] Whitney forms of higher degree. Preprint.
and ,[10] Finite element methods for Navier-Stokes equations. Springer-Verlag, Berlin (1986). | MR | Zbl
and ,[11] Nédélec spaces in affine coordinates. ICES Report 03-48 (2003). | Zbl
, and ,[12] Higher order interpolatory vector bases for computational electromagnetics. IEEE Trans. on Ant. and Propag. 45 (1997) 329-342.
, and ,[13] Canonical construction of finite elements. Math. Comp. 68 (1999) 1325-1346. | Zbl
,[14] High order Whitney forms. Prog. Electr. Res. (PIER) 32 (2001) 271-299.
,[15] Spectral hp element methods for CFD. Oxford Univ. Press, London (1999). | MR | Zbl
and ,[16] On condition numbers in -FEM with Gauss-Lobatto-based shape functions. J. Comput. Appl. Math. 139 (2002) 21-48. | Zbl
,[17] Finite Element Methods for Maxwell's Equations. Oxford University Press (2003). | Zbl
,[18] Mixed finite elements in . Numer. Math. 35 (1980) 315-341. | Zbl
,[19] Geometrical localization of the degrees of freedom for Whitney elements of higher order. IEE Sci. Meas. Technol. 1 (2007) 63-66.
and ,[20] High order Nédélec elements with local complete sequence properties. COMPEL 24 (2005) 374-384. | Zbl
and ,[21] Classical topology and combinatorial group theory, Graduate Text in Mathematics 72. Springer-Verlag (1993). | MR | Zbl
,[22] Hierarchal scalar and vector tetrahedra. IEEE Trans. on Magn. 29 (1993) 1495-1498.
and ,[23] Geometric integration theory. Princeton Univ. Press (1957). | MR | Zbl
,Cité par Sources :