Homogenization of thin piezoelectric perforated shells
ESAIM: Modélisation mathématique et analyse numérique, Tome 41 (2007) no. 5, pp. 875-895.

We rigorously establish the existence of the limit homogeneous constitutive law of a piezoelectric composite made of periodically perforated microstructures and whose reference configuration is a thin shell with fixed thickness. We deal with an extension of the Koiter shell model in which the three curvilinear coordinates of the elastic displacement field and the electric potential are coupled. By letting the size of the microstructure going to zero and by using the periodic unfolding method combined with the Korn's inequality in perforated domains, we obtain the limit model.

DOI : 10.1051/m2an:2007046
Classification : 74K25, 74Q05, 35B27
Mots clés : computational solid mechanics, homogenization, perforations, piezoelectricity, shells
@article{M2AN_2007__41_5_875_0,
     author = {Ghergu, Marius and Griso, Georges and Mechkour, Houari and Miara, Bernadette},
     title = {Homogenization of thin piezoelectric perforated shells},
     journal = {ESAIM: Mod\'elisation math\'ematique et analyse num\'erique},
     pages = {875--895},
     publisher = {EDP-Sciences},
     volume = {41},
     number = {5},
     year = {2007},
     doi = {10.1051/m2an:2007046},
     mrnumber = {2363887},
     zbl = {1138.74039},
     language = {en},
     url = {http://www.numdam.org/articles/10.1051/m2an:2007046/}
}
TY  - JOUR
AU  - Ghergu, Marius
AU  - Griso, Georges
AU  - Mechkour, Houari
AU  - Miara, Bernadette
TI  - Homogenization of thin piezoelectric perforated shells
JO  - ESAIM: Modélisation mathématique et analyse numérique
PY  - 2007
SP  - 875
EP  - 895
VL  - 41
IS  - 5
PB  - EDP-Sciences
UR  - http://www.numdam.org/articles/10.1051/m2an:2007046/
DO  - 10.1051/m2an:2007046
LA  - en
ID  - M2AN_2007__41_5_875_0
ER  - 
%0 Journal Article
%A Ghergu, Marius
%A Griso, Georges
%A Mechkour, Houari
%A Miara, Bernadette
%T Homogenization of thin piezoelectric perforated shells
%J ESAIM: Modélisation mathématique et analyse numérique
%D 2007
%P 875-895
%V 41
%N 5
%I EDP-Sciences
%U http://www.numdam.org/articles/10.1051/m2an:2007046/
%R 10.1051/m2an:2007046
%G en
%F M2AN_2007__41_5_875_0
Ghergu, Marius; Griso, Georges; Mechkour, Houari; Miara, Bernadette. Homogenization of thin piezoelectric perforated shells. ESAIM: Modélisation mathématique et analyse numérique, Tome 41 (2007) no. 5, pp. 875-895. doi : 10.1051/m2an:2007046. http://www.numdam.org/articles/10.1051/m2an:2007046/

[1] G. Allaire, Homogenization and two-scale convergence. SIAM J. Math. Anal. 23 (1992) 1482-1518. | Zbl

[2] T. Arbogast, J. Douglas and U. Hornung, Derivation of the double porosity model of single phase flow in homogenization theory. SIAM J. Math. Anal. 21 (1990) 823-836. | Zbl

[3] A. Bensoussan, J.-L. Lions and G. Papanicolaou, Asymptotic methods in periodic media. North Holland (1978). | MR

[4] A. Bourgeat, J.B. Castillero, J.A. Otero and R.R. Ramos, Asymptotic homogenization of laminated piezocomposite materials. Int. J. Solids Structures 35 (1998) 527-541. | Zbl

[5] D. Caillerie and E. Sanchez-Palencia, A new kind of singular stiff problems and application to thin elastic shells. Math. Models Methods Appl. Sci. 5 (1995) 47-66. | Zbl

[6] D. Caillerie and E. Sanchez-Palencia, Elastic thin shells: Asymptotic theory in the anisotropic and heterogeneous cases. Math. Models Methods Appl. Sci. 5 (1995) 473-496. | Zbl

[7] A. Cioranescu, A. Damlamian and G. Griso, Periodic unfolding and homogenization. C. R. Acad. Sci. Paris, Sér. I 335 (2002) 99-104. | Zbl

[8] D. Cioranescu and P. Donato, An introduction to homogenization. Oxford University Press (1999). | MR | Zbl

[9] D. Cioranescu and P. Donato, The periodic unfolding method in perforated domains,Portugaliae Mathematica, Vol. 63, Fasc. 4 (2006) 467-496. | Zbl

[10] D. Cioranescu and J. Saint-Jean Paulin, Homogenization of reticulated structures. Springer-Verlag, New-York (1999). | MR | Zbl

[11] D. Cioranescu, P. Donato and R. Zaki, The periodic unfolding method in perforated domains. Porth. Math. N.S. 63 (2006) 467-496. | Zbl

[12] E. Dieulesaint and D. Royer, Ondes élastiques dans les solides, application au traitement du signal. Masson, Paris (1974).

[13] C. Haenel, Analyse et simulation numérique de coques piézoélectriques. Ph.D. thesis, Université Pierre et Marie Curie, France (2000).

[14] T. Ikeda, Fundamentals of piezoelectricity. Oxford University Press (1990).

[15] W.T. Koiter, On the foundations of the linear theory of thin elastic shell. Proc. Kon. Ned. Akad. Wetensch. B73 (1970) 169-195. | Zbl

[16] T. Lewiński and J.J. Telega, Plates, laminates and shells. Asymptotic analysis and homogenization, Advances in Mathematics for Applied Sciences. World Scientific (2000). | MR | Zbl

[17] S. Luckhaus, A. Bourgeat and A. Mikelic, Convergence of the homogenization process for a double porosity model of immiscible two phase flow. SIAM J. Math. Anal. 27 (1996) 1520-1543. | Zbl

[18] H. Mechkour, Homogénéisation et simulation numérique de structures piézoeléctriques perforées et laminées. Ph.D. thesis, ESIEE-Paris (2004).

[19] B. Miara, E. Rohan, M. Zidi and B. Labat, Piezomaterials for bone regeneration design. Homogenization approach. J. Mech. Phys. Solids 53 (2005) 2529-2556.

[20] G. Nguetseng, A general convergence result for a functional related to the theory of homogenisation. SIAM J. Math. Anal. 20 (1989) 608-623. | Zbl

[21] A. Preumont, A. François and P. De Man, Spatial filtering with piezoelectric films via porous electrod design, in Proc. of 13th Int. Conf. on Adaptive Structures and Technologies, Berlin (2002).

[22] J. Sanchez-Hubert and E. Sanchez-Palencia, Introduction aux méthodes asymptotiques et à l'homogénéisation. Application à la Mécanique des milieux continus. Masson, Paris (1992).

[23] J. Sanchez-Hubert and E. Sanchez-Palencia, Coques élastiques minces. Propriétés asymptotiques. Masson, Paris (1997). | Zbl

Cité par Sources :