We present a sparse grid/hyperbolic cross discretization for many-particle problems. It involves the tensor product of a one-particle multilevel basis. Subsequent truncation of the associated series expansion then results in a sparse grid discretization. Here, depending on the norms involved, different variants of sparse grid techniques for many-particle spaces can be derived that, in the best case, result in complexities and error estimates which are independent of the number of particles. Furthermore we introduce an additional constraint which gives antisymmetric sparse grids which are suited to fermionic systems. We apply the antisymmetric sparse grid discretization to the electronic Schrödinger equation and compare costs, accuracy, convergence rates and scalability with respect to the number of electrons present in the system.
Mots-clés : Schrödinger equation, numerical approximation, sparse grid method, antisymmetric sparse grids
@article{M2AN_2007__41_2_215_0, author = {Griebel, Michael and Hamaekers, Jan}, title = {Sparse grids for the {Schr\"odinger} equation}, journal = {ESAIM: Mod\'elisation math\'ematique et analyse num\'erique}, pages = {215--247}, publisher = {EDP-Sciences}, volume = {41}, number = {2}, year = {2007}, doi = {10.1051/m2an:2007015}, mrnumber = {2339626}, language = {en}, url = {http://www.numdam.org/articles/10.1051/m2an:2007015/} }
TY - JOUR AU - Griebel, Michael AU - Hamaekers, Jan TI - Sparse grids for the Schrödinger equation JO - ESAIM: Modélisation mathématique et analyse numérique PY - 2007 SP - 215 EP - 247 VL - 41 IS - 2 PB - EDP-Sciences UR - http://www.numdam.org/articles/10.1051/m2an:2007015/ DO - 10.1051/m2an:2007015 LA - en ID - M2AN_2007__41_2_215_0 ER -
%0 Journal Article %A Griebel, Michael %A Hamaekers, Jan %T Sparse grids for the Schrödinger equation %J ESAIM: Modélisation mathématique et analyse numérique %D 2007 %P 215-247 %V 41 %N 2 %I EDP-Sciences %U http://www.numdam.org/articles/10.1051/m2an:2007015/ %R 10.1051/m2an:2007015 %G en %F M2AN_2007__41_2_215_0
Griebel, Michael; Hamaekers, Jan. Sparse grids for the Schrödinger equation. ESAIM: Modélisation mathématique et analyse numérique, Special issue on Molecular Modelling, Tome 41 (2007) no. 2, pp. 215-247. doi : 10.1051/m2an:2007015. http://www.numdam.org/articles/10.1051/m2an:2007015/
[1] Numerical solution of the Dirac equation by a mapped Fourier grid method. J. Phys. A: Math. General 38 (2005) 3157-3171. | Zbl
and ,[2] Sobolev spaces. Academic Press, New York (1975). | MR | Zbl
,[3] Mathematical concepts of open quantum boundary conditions. Transport Theory Statist. Phys. 30 (2001) 561-584. | Zbl
,[4] Molecular quantum mechanics. Oxford University Press, Oxford (1997).
and ,[5] Approximation by trigonometric polynomials in a certain class of periodic functions of several variables. Dokl. Akad. Nauk SSSR 132 (1960) 672-675. | Zbl
,[6] PETSc users manual. Tech. Report ANL-95/11 - Revision 2.1.5, Argonne National Laboratory (2004).
, , , , , , , and ,[7] Adaptive control processes: A guided tour. Princeton University Press (1961). | MR | Zbl
,[8] Chebyshev and Fourier spectral methods. Dover Publications, New York (2000). | MR | Zbl
,[9] Dünne Gitter und deren Anwendung bei der adaptiven Lösung der dreidimensionalen Poisson-Gleichung. Dissertation, Institut für Informatik, TU München (1992).
,[10] Finite elements of higher order on sparse grids. Habilitationsschrift, Institut für Informatik, TU München and Shaker Verlag, Aachen (1998).
,[11] A note on the complexity of solving Poisson's equation for spaces of bounded mixed derivatives. J. Complexity 15 (1999) 167-199. | Zbl
and ,[12] Sparse grids. Acta Numer. 13 (2004) 147-269. | Zbl
and ,[13] Multigrid methods for nearly singular linear equations and eigenvalue problems. SIAM J. Numer. Anal. 34 (1997) 178-200. | Zbl
, and ,[14] Subspace correction multi-level methods for elliptic eigenvalue problems. Numer. Linear Algebra Appl. 9 (2002) 1-20. | Zbl
and ,[15] A general framework for compactly supported splines and wavelets. J. Approx. Theory 71 (1992) 263-304. | Zbl
and ,[16] Numerical analysis of wavelet methods, Studies in Mathematics and its Applications 32. North Holland (2003). | MR | Zbl
,[17] The theory of complex spectra. Phys. Rev. 36 (1930) 1121-1133. | JFM
,[18] Ten lectures on wavelets. CBMS-NSF Regional Conf. Series in Appl. Math. 61, SIAM (1992). | MR | Zbl
,[19] Symmetric iterative interpolation processes. Constr. Approx. 5 (1989) 49-68. | Zbl
and ,[20] Hyperbolic wavelet approximation. Constr. Approx. 14 (1998) 1-26. | Zbl
, and ,[21] Number of lattice points in the hyperbolic cross. Math. Notes 11 (1998) 319-324. | Zbl
and ,[22] Deslauriers-Dubuc: Ten years after, CRM Proceedings and Lecture Notes 18, G. Deslauriers and S. Dubuc Eds. (1999). | Zbl
and ,[23] Die Berechnung optischer und elektrostatischer Gitterpotentiale. Ann. Phys. 64 (1921) 253-287. | JFM
,[24] Phase space approach for optimizing grid representations: the mapped Fourier method. Phys. Rev. E 53 (1996) 1217-1227.
, and ,[25] Absorbing boundary conditions for the Schrödinger equation. SIAM J. Scientific Comput. 21 (1999) 255-282. | Zbl
and ,[26] There's plenty of room at the bottom: An invitation to enter a new world of physics. Engineering and Science XXIII, Feb. issue (1960), http://www.zyvex.com/nanotech/feynman.html.
,[27] Wavelet approximation of correlated wavefunctions. I. Basics., J. Chem. Phys. 116 (2002) 9641-9857.
, , and ,[28] Best N term approximation in electronic structure calculations. I. One electron reduced density matrix. Tech. Report 05-9, Berichtsreihe des Mathematischen Seminars der Universität Kiel (2005).
, and ,[29] Coupled-cluster theory with simplified linear-r12 corrections: The CCSD(R12) model. J. Chem. Phys. 122 (2005) 084107.
, and ,[30] The electron density is smooth away from the nuclei. Commun. Math. Phys. 228 (2002) 401-415. | Zbl
, , and ,[31] Sharp regularity results for Coulombic many-electron wave functions. Commun. Math. Phys. 255 (2005) 183-227. | Zbl
, , and ,[32] Information complexity of multivariate Fredholm equations in Sobolev classes. J. Complexity 12 (1996) 17-34. | Zbl
, and ,[33] The configuraton-interaction equations for atoms and molecules: Charge quantization and existence of solutions. Preprint, June 28, 1999, Mathematical Insitute, University of Oxford, UK.
,[34] On the computation of the eigenproblems of hydrogen and helium in strong magnetic and electric fields with the sparse grid combination technique. J. Comput. Phys. 165 (2000) 694-716. | Zbl
and ,[35] Numerical integration using sparse grids. Numer. Algorithms 18 (1998) 209-232. | Zbl
and ,[36] Dimension-adaptive tensor-product quadrature. Computing 71 (2003) 65-87. | Zbl
and ,[37] Multilevel algorithms considered as iterative methods on semidefinite systems. SIAM J. Sci. Stat. Comput. 15 (1994) 547-565. | Zbl
,[38] Sparse grids and related approximation schemes for higher dimensional problems, in Proceedings of the conference on Foundations of Computational Mathematics (FoCM05), Santander, Spain, 2005. | MR | Zbl
,[39] Optimized tensor-product approximation spaces. Constr. Approx. 16 (2000) 525-540. | Zbl
and ,[40] On additive Schwarz preconditioners for sparse grid discretizations. Numer. Math. 66 (1994) 449-463. | Zbl
and ,[41] On the abstract theory of additive and multiplicative Schwarz algorithms. Numer. Math. 70 (1995) 161-180. | Zbl
and ,[42] Tensor product type subspace splitting and multilevel iterative methods for anisotropic problems. Adv. Comput. Math. 4 (1995) 171-206. | Zbl
and ,[43] Sparse grids for boundary integral equations. Numer. Mathematik 83 (1999) 279-312. | Zbl
, and ,[44] Adaptive Riemannian metric for plane-wave electronic-structure calculations. Europhys. Lett. 19 (1992) 617.
,[45] Electronic-structure calculations in adaptive coordinates. Phys. Rev. B 48 (1993) 11692.
,[46] Comparison of global and local adaptive coordinates for density-functional calculations. Phys. Rev. B 63 (2001) 075107.
,[47] SLEPc: A scalable and flexible toolkit for the solution of eigenvalue problems. ACM Trans. Math. Software 31 (2005) 351-362. | Zbl
, and ,[48] Wavelet bases in numerical analysis and restricted nonlinear approximation. Habilitationsschrift, Freie Universität Berlin (1999).
,[49] Tensor products of Sobolev spaces and applications. Tech. Report 685, SFB 256, Univ. Bonn (2000).
, and ,[50] Electron wavefunction and densities for atoms. Ann. Henri Poincaré 2 (2001) 77-100. | Zbl
, and ,[51] Spectral/hp element methods for CFD. Oxford University Press (1999). | MR | Zbl
and ,[52] On the eigenfunctions of many-particle systems in quantum mechanics. Commun. Pure Appl. Math. 10 (1957) 151-177. | Zbl
,[53] Exact non-reflecting boundary conditions. J. Comput. Phys. 82 (1989) 172-192. | Zbl
and ,[54] Approximation und Kompression mit Tensorprodukt-Multiskalenräumen. Dissertation, Universität Bonn, April (2000).
,[55] Hyperbolic cross approximation of integral operators with smooth kernel. Tech. Report 665, SFB 256, Univ. Bonn (2000).
,[56] Efficient solution of symmetric eigenvalue problem using multigrid preconditioners in the locally optimal block conjugate gradient method. Electronic Trans. Numer. Anal. 15 (2003) 38-55. | Zbl
and ,[57] Convergence of expansions in a Gaussian basis. Strategies and Applications in Quantum Chemistry, M. Defranceschi and Y. Ellinger Eds., Kluwer, Dordrecht (1996).
,[58] Minimal parametrization of an n-electron state. Phys. Rev. A 71 (2005) 022502.
and ,[59] Computational chemistry from the perspective of numerical analysis. Acta Numer. 14 (2005) 363-444. | Zbl
,[60] Quantum chemistry, 5th edn., Prentice-Hall (2000).
,[61] Comparative analysis of Cuthill-McKee and reverse Cuthill-McKee ordering algorithms for sparse matrices. SIAM J. Numer Anal. 13 (1976) 198-213. | Zbl
and ,[62] multilevel calculation of eigenfunctions. Multiscale Computational Methods in Chemistry and Physics, A. Brandt, J. Bernholc and K. Binder Eds., NATO Science Series III: Computer and Systems Sciences, IOS Press 177 (2001) 112-136.
and ,[63] On approximate approximations using Gaussian kernels. IMA J. Numer. Anal. 16 (1996) 13-29. | Zbl
and ,[64] Variational two-electron reduced density matrix theory for many-electron atoms and molecules: Implementation of the spin- and symmetry-adapted T-2 condition through first-order semidefinite programming. Phys. Rev. A 72 (2005) 032510.
,[65] Quantum mechanics. Vol. 1 and 2, North-Holland, Amsterdam, 1961/62. | Zbl
,[66] Best term approximation spaces for sparse grids. Tech. Report 2003-11, ETH Zürich, Seminar für Angewandte Mathematik (2003).
,[67] Multilevel finite element approximation. Teubner Skripten zur Numerik, Teubner, Stuttgart (1994). | MR | Zbl
,[68] Density Functional Theory of Atoms and Molecules. Oxford University Press, New York (1989).
and ,[69] Fourier analysis and functions spaces. John Wiley, Chichester (1987). | MR
and ,[70] High-precision Hy-CI variational calculations for the ground state of neutral helium and helium-like ions. Int. J. Quant. Chem. 90 (2002) 1600-1609.
and ,[71] The theory of complex spectra. Phys. Rev. 34 (1929) 1293-1322. | JFM
,[72] Quadrature and interpolation formulas for tensor products of certain classes of functions. Soviet Math. Dokl. 4 (1963) 240-243, Russian original in Dokl. Akad. Nauk SSSR 148 (1963) 1042-1045. | Zbl
,[73] Finite element analysis. Wiley (1991). | MR | Zbl
and ,[74] Design of absorbing boundary conditions for Schrödinger equations in . SIAM J. Numer. Anal. 42 (2004) 1527-1551. | Zbl
,[75] Linear operators in Hilbert spaces. Springer, New York (1980). | MR | Zbl
,[76] On the electronic Schrödinger equation. Report 191, SFB 382, Univ. Tübingen (2003).
,[77] On the regularity of the electronic Schrödinger equation in Hilbert spaces of mixed derivatives. Numer. Math. 98 (2004) 731-759. | Zbl
,[78] The approximation of classes of periodic functions of many variables. Russian Math. Surveys 38 (1983) 117-118. | Zbl
,[79] Approximation by trigonometric polynomials of functions of several variables on the torus. Math. USSR Sbornik 59 (1988) 247-267. | Zbl
,Cité par Sources :