In this work, we consider singular perturbations of the boundary of a smooth domain. We describe the asymptotic behavior of the solution
Mots-clés : multiscale asymptotic analysis, shape optimization, patch of elements
@article{M2AN_2007__41_1_111_0, author = {Dambrine, Marc and Vial, Gr\'egory}, title = {A multiscale correction method for local singular perturbations of the boundary}, journal = {ESAIM: Mod\'elisation math\'ematique et analyse num\'erique}, pages = {111--127}, publisher = {EDP-Sciences}, volume = {41}, number = {1}, year = {2007}, doi = {10.1051/m2an:2007012}, mrnumber = {2323693}, zbl = {1129.65084}, language = {en}, url = {https://www.numdam.org/articles/10.1051/m2an:2007012/} }
TY - JOUR AU - Dambrine, Marc AU - Vial, Grégory TI - A multiscale correction method for local singular perturbations of the boundary JO - ESAIM: Modélisation mathématique et analyse numérique PY - 2007 SP - 111 EP - 127 VL - 41 IS - 1 PB - EDP-Sciences UR - https://www.numdam.org/articles/10.1051/m2an:2007012/ DO - 10.1051/m2an:2007012 LA - en ID - M2AN_2007__41_1_111_0 ER -
%0 Journal Article %A Dambrine, Marc %A Vial, Grégory %T A multiscale correction method for local singular perturbations of the boundary %J ESAIM: Modélisation mathématique et analyse numérique %D 2007 %P 111-127 %V 41 %N 1 %I EDP-Sciences %U https://www.numdam.org/articles/10.1051/m2an:2007012/ %R 10.1051/m2an:2007012 %G en %F M2AN_2007__41_1_111_0
Dambrine, Marc; Vial, Grégory. A multiscale correction method for local singular perturbations of the boundary. ESAIM: Modélisation mathématique et analyse numérique, Tome 41 (2007) no. 1, pp. 111-127. doi : 10.1051/m2an:2007012. https://www.numdam.org/articles/10.1051/m2an:2007012/
[1] Shape optimization by the homogenization method, Applied Mathematical Sciences 146. Springer-Verlag, New York (2002). | MR | Zbl
,[2] Modélisation ‘macro' de phénomènes localisés à l'échelle ‘micro' : formulation et implantation numérique. Revue européenne des éléments finis, numéro spécial Giens 2003 13 (2004) 461-473.
and ,[3] Ultimate load computation, effect of surfacic defect and adaptative techniques, in 7th World Congress in Computational Mechanics, Los Angeles (2006).
, , and ,[4] Asymptotic expansion of the solution of an interface problem in a polygonal domain with thin layer. Asymptotic Anal. 50 (2006) 121-173. | Zbl
, , and ,[5] On the influence of a boundary perforation on the dirichlet energy. Control Cybern. 34 (2005) 117-136.
and ,[6] Absorbing boundary conditions for the numerical simulation of waves. Math. Comp. 31 (1977) 629-651. | Zbl
and ,[7] Nonreflecting boundary conditions. J. Comput. Phys. 94 (1991) 1-29. | Zbl
,[8] Matching of Asymptotic Expansions of Solutions of Boundary Value Problems. Translations of Mathematical Monographs 102, Amer. Math. Soc., Providence, R.I. (1992). | Zbl
,[9] Boundary value problems for elliptic equations in domains with conical or angular points. Trans. Moscow Math. Soc. 16 (1967) 227-313. | Zbl
,[10] Computation of singular solutions in elliptic problems and elasticity. Masson, Paris (1987). | MR | Zbl
and ,[11] The localized finite element method and its application to the two-dimensional sea-keeping problem. SIAM J. Numer. Anal. 25 (1988) 729-752. | Zbl
and ,[12] Topological derivative for nucleation of non-circular voids. The Neumann problem, in Differential geometric methods in the control of partial differential equations (Boulder, CO, 1999), Contemp. Math. 268, Amer. Math. Soc., Providence, RI (2000) 341-361. | Zbl
and ,[13] The Topological Asymptotic, in Computational Methods for Control Applications, International Séries GAKUTO (2002). | Zbl
,[14] Asymptotic behavior of energy integrals under small perturbations of the boundary near corner and conic points. Trudy Moskov. Mat. Obshch. 50 (1987) 79-129, 261. | Zbl
and ,[15] Asymptotic theory of elliptic boundary value problems in singularly perturbed domains. Birkhäuser, Berlin (2000).
, and ,[16] Perturbation of the eigenvalues of the Neumann problem due to the variation of the domain boundary. Algebra i Analiz 5 (1993) 169-188. | Zbl
and ,[17] Asymptotic analysis of shape functionals. J. Math. Pures Appl. 82 (2003) 125-196. | Zbl
and ,[18] Matching of asymptotic expansions and multiscale expansion for the rounded corner problem. SAM Research Report, ETH, Zürich (2006).
and ,Cité par Sources :