We consider higher order mixed finite element methods for the incompressible Stokes or Navier-Stokes equations with -elements for the velocity and discontinuous -elements for the pressure where the order can vary from element to element between and a fixed bound . We prove the inf-sup condition uniformly with respect to the meshwidth on general quadrilateral and hexahedral meshes with hanging nodes.
Mots-clés : inf-sup condition, higher order mixed finite element, adaptive grids, hanging nodes
@article{M2AN_2007__41_1_1_0, author = {Heuveline, Vincent and Schieweck, Friedhelm}, title = {On the inf-sup condition for higher order mixed {FEM} on meshes with hanging nodes}, journal = {ESAIM: Mod\'elisation math\'ematique et analyse num\'erique}, pages = {1--20}, publisher = {EDP-Sciences}, volume = {41}, number = {1}, year = {2007}, doi = {10.1051/m2an:2007005}, mrnumber = {2323688}, zbl = {1129.65086}, language = {en}, url = {http://www.numdam.org/articles/10.1051/m2an:2007005/} }
TY - JOUR AU - Heuveline, Vincent AU - Schieweck, Friedhelm TI - On the inf-sup condition for higher order mixed FEM on meshes with hanging nodes JO - ESAIM: Modélisation mathématique et analyse numérique PY - 2007 SP - 1 EP - 20 VL - 41 IS - 1 PB - EDP-Sciences UR - http://www.numdam.org/articles/10.1051/m2an:2007005/ DO - 10.1051/m2an:2007005 LA - en ID - M2AN_2007__41_1_1_0 ER -
%0 Journal Article %A Heuveline, Vincent %A Schieweck, Friedhelm %T On the inf-sup condition for higher order mixed FEM on meshes with hanging nodes %J ESAIM: Modélisation mathématique et analyse numérique %D 2007 %P 1-20 %V 41 %N 1 %I EDP-Sciences %U http://www.numdam.org/articles/10.1051/m2an:2007005/ %R 10.1051/m2an:2007005 %G en %F M2AN_2007__41_1_1_0
Heuveline, Vincent; Schieweck, Friedhelm. On the inf-sup condition for higher order mixed FEM on meshes with hanging nodes. ESAIM: Modélisation mathématique et analyse numérique, Tome 41 (2007) no. 1, pp. 1-20. doi : 10.1051/m2an:2007005. http://www.numdam.org/articles/10.1051/m2an:2007005/
[1] A uniformly stable family of mixed -finite elements with continuous pressures for incompressible flow. IMA J. Numer. Anal. 22 (2002) 307-327. | Zbl
and ,[2] The and versions of the finite element method, basic principles and properties. SIAM Rev. 36 (1994) 578-632. | Zbl
and ,[3] Approximations spectrales de problèmes aux limites elliptiques. (Spectral approximation for elliptic boundary value problems). Mathématiques & Applications, Paris, Springer-Verlag 10 (1992). | MR | Zbl
and .[4] Uniform inf-sup conditions for the spectral discretization of the Stokes problem. Math. Models Methods Appl. Sci. 9 (1999) 395-414. | Zbl
and ,[5] On the quadrilateral Q-P element for the Stokes problem. Int. J. Numer. Methods Fluids 39 (2002) 1001-1011. | Zbl
and ,[6] Stability of finite elements under divergence constraints. SIAM J. Numer. Anal. 20 (1983) 722-731. | Zbl
and ,[7] Adaptive boundary conditions for exterior flow problems. J. Math. Fluid Mech. 7 (2005) 85-107. | Zbl
, and ,[8] Stability of higher-order Hood-Taylor methods. SIAM J. Numer. Anal. 28 (1991) 581-590. | Zbl
and ,[9] Mixed and Hybrid Finite Element Methods. Springer Series in Computational Mathematics, Springer-Verlag 15 (1991). | MR | Zbl
and ,[10] On the construction of stable curvilinear version elements for mixed formulations of elasticity and Stokes flow. Numer. Math. 86 (2000) 29-48. | Zbl
and ,[11] The finite element method for elliptic problems. Studies in Mathematics and its Applications 4, Amsterdam - New York - Oxford: North-Holland Publishing Company (1978). | MR | Zbl
,[12] An analysis of the convergence of mixed finite element methods. RAIRO Anal. Numer. 11 (1977) 341-354. | Numdam | Zbl
,[13] Finite Element Methods for Navier-Stokes Equations. Springer-Verlag, Berlin-Heidelberg-New York (1986). | Zbl
and ,[14] Adjoint-based adaptive time-stepping for partial differential equations using proper orthogonal decomposition. Technical report, University Heidelberg, SFB 359 (2004).
and ,[15] A posteriori error control for finite element approximations of elliptic eigenvalue problems. Adv. Comput. Math. 15 (2001) 107-138. | Zbl
and ,[16] Duality-based adaptivity in the -finite element method. J. Numer. Math. 11 (2003) 95-113. | Zbl
and ,[17] An interpolation operator for functions on general quadrilateral and hexahedral meshes with hanging nodes. Technical report, University Heidelberg, SFB 359 (2004).
and ,[18] Mapped finite elements on hexahedra. Necessary and sufficient conditions for optimal interpolation errors. Numer. Algorithms 27 (2001) 317-327. | Zbl
,[19] The inf-sup condition for the mapped - element in arbitrary space dimensions. Computing 69 (2002) 119-139. | Zbl
and ,[20] Mixed -fem on anisotropic meshes. II: Hanging nodes and tensor products of boundary layer meshes. Numer. Math. 83 (1999) 667-697. | Zbl
, and ,[21] and finite element methods. Theory and applications in solid and fluid mechanics. Numerical Mathematics and Scientific Computation, Oxford: Clarendon Press (1998). | MR | Zbl
,[22] Finite element interpolation of nonsmooth functions satisfying boundary conditions. Math. Comp. 54 (1990) 483-493. | Zbl
and ,[23] Error analysis of some finite element methods for the Stokes problem. Math. Comp. 54 (1990) 495-508. | Zbl
,[24] Mixed finite element methods for problems in elasticity and Stokes flow. Numer. Math. 72 (1996) 367-389. | Zbl
and ,[25] Navier-Stokes equations in irregular domains. Mathematics and its Applications 326, Dordrecht: Kluwer Academic Publishers (1995). | MR | Zbl
,Cité par Sources :