In this paper, by use of affine biquadratic elements, we construct and analyze a finite volume element scheme for elliptic equations on quadrilateral meshes. The scheme is shown to be of second-order in -norm, provided that each quadrilateral in partition is almost a parallelogram. Numerical experiments are presented to confirm the usefulness and efficiency of the method.
Mots-clés : finite volume element, second-order, quadrilateral meshes, error estimates
@article{M2AN_2006__40_6_1053_0, author = {Yang, Min}, title = {A second-order finite volume element method on quadrilateral meshes for elliptic equations}, journal = {ESAIM: Mod\'elisation math\'ematique et analyse num\'erique}, pages = {1053--1067}, publisher = {EDP-Sciences}, volume = {40}, number = {6}, year = {2006}, doi = {10.1051/m2an:2007002}, mrnumber = {2297104}, zbl = {1141.65081}, language = {en}, url = {http://www.numdam.org/articles/10.1051/m2an:2007002/} }
TY - JOUR AU - Yang, Min TI - A second-order finite volume element method on quadrilateral meshes for elliptic equations JO - ESAIM: Modélisation mathématique et analyse numérique PY - 2006 SP - 1053 EP - 1067 VL - 40 IS - 6 PB - EDP-Sciences UR - http://www.numdam.org/articles/10.1051/m2an:2007002/ DO - 10.1051/m2an:2007002 LA - en ID - M2AN_2006__40_6_1053_0 ER -
%0 Journal Article %A Yang, Min %T A second-order finite volume element method on quadrilateral meshes for elliptic equations %J ESAIM: Modélisation mathématique et analyse numérique %D 2006 %P 1053-1067 %V 40 %N 6 %I EDP-Sciences %U http://www.numdam.org/articles/10.1051/m2an:2007002/ %R 10.1051/m2an:2007002 %G en %F M2AN_2006__40_6_1053_0
Yang, Min. A second-order finite volume element method on quadrilateral meshes for elliptic equations. ESAIM: Modélisation mathématique et analyse numérique, Tome 40 (2006) no. 6, pp. 1053-1067. doi : 10.1051/m2an:2007002. http://www.numdam.org/articles/10.1051/m2an:2007002/
[1] Some error estimates for the box method. SIAM J. Numer. Anal. 24 (1987) 777-787. | Zbl
and ,[2] A Petrov-Galerkin method with quadrature for elliptic boundary value problems. IMA J. Numer. Anal. 24 (2004) 157-177. | Zbl
, and ,[3] On the finite volume element method. Numer. Math. 58 (1991) 713-735. | Zbl
,[4] The finite volume element method for diffusion equations on general triangulations. SIAM J. Numer. Anal. 28 (1991) 392-402. | Zbl
, and ,[5] On the regularity and uniformness conditions on quadrilateral grids. Comput. Methods Appl. Mech. Engrg., 191 (2002) 5149-5158. | Zbl
and ,[6] Mixed finite volume methods on nonstaggered quadrilateral grids for elliptic problems. Math. Comp. 72 (2002) 525-539. | Zbl
, and ,[7] error estimates and superconvergence for covolume or finite volume element methods. Num. Meth. P. D. E. 19 (2003) 463-486. | Zbl
, and ,[8] The finite element methods for elliptic problems. North-Holland, Amsterdam, New York, Oxford (1980). | Zbl
,[9] Finite volume element approximations of nonlocal reactive flows in porous media. Num. Meth. P. D. E. 16 (2000) 285-311. | Zbl
, and ,[10] On the accuracy of the finite volume element method based on piecewise linear polynomials. SIAM J. Numer. Anal. 39 (2001) 1865-1888. | Zbl
, and ,[11] On first and second order box schemes. Computing 41 (1989) 277-296. | Zbl
,[12] Direct solution of partitial difference equations by tensor product methods. Numer. Math. 6 (1964) 185-199. | Zbl
, and ,[13] Generalized difference methods on arbitrary quadrilateral networks. J. Comput. Math. 17 (1999) 653-672. | Zbl
and ,[14] Generalized difference methods for differential equations, Numerical analysis of finite volume methods. Marcel Dekker, New York (2000). | MR | Zbl
, and ,[15] The finite volume element method with quadratic basis functions. Computing 57 (1996) 281-299. | Zbl
,[16] Finite volume element methods for non-definite problems. Numer. Math. 83 (1999) 161-175. | Zbl
,[17] Convergence of finite volume schemes for Poisson's equation on nonuniform meshes. SIAM J. Numer. Anal. 28 (1991) 1419-1430. | Zbl
,[18] The accuracy of cell vertex finite volume methods on quadrilateral meshes. Math. Comp. 59 (1992) 359-382. | Zbl
,[19] Generalized difference methods for second order elliptic partial differential equations. Numer. Math. J. Chinese Universities 13 (1991) 99-113. | Zbl
and ,[20] Spectral (finite) volume methods for conservation laws on unstructured grids: basic formulation. J. Comput. Phys. 178 (2002) 210-251. | Zbl
,[21] Spectral (finite) volume method for conservation laws on unstructured grids. IV: Extension to two-dimensional systems. J. Comput. Phys. 194 (2004) 716-741. | Zbl
, and ,[22] Generalized difference methods for second order elliptic equations. Numer. Math. J. Chinese Universities 2 (1983) 114-126. | Zbl
,[23] A multistep finite volume element scheme along characteristics for nonlinear convection diffusion problems. Math. Numer. Sinica 24 (2004) 487-500.
and ,Cité par Sources :