We consider models based on conservation laws. For the optimization of such systems, a sensitivity analysis is essential to determine how changes in the decision variables influence the objective function. Here we study the sensitivity with respect to the initial data of objective functions that depend upon the solution of Riemann problems with piecewise linear flux functions. We present representations for the one-sided directional derivatives of the objective functions. The results can be used in the numerical method called Front-Tracking.
Mots-clés : sensitivity calculus, front-tracking, conservation laws
@article{M2AN_2006__40_5_939_0, author = {Gugat, Martin and Herty, Micha\"el and Klar, Axel and Leugering, Gunter}, title = {Conservation law constrained optimization based upon front-tracking}, journal = {ESAIM: Mod\'elisation math\'ematique et analyse num\'erique}, pages = {939--960}, publisher = {EDP-Sciences}, volume = {40}, number = {5}, year = {2006}, doi = {10.1051/m2an:2006037}, mrnumber = {2293253}, zbl = {1116.65079}, language = {en}, url = {http://www.numdam.org/articles/10.1051/m2an:2006037/} }
TY - JOUR AU - Gugat, Martin AU - Herty, Michaël AU - Klar, Axel AU - Leugering, Gunter TI - Conservation law constrained optimization based upon front-tracking JO - ESAIM: Modélisation mathématique et analyse numérique PY - 2006 SP - 939 EP - 960 VL - 40 IS - 5 PB - EDP-Sciences UR - http://www.numdam.org/articles/10.1051/m2an:2006037/ DO - 10.1051/m2an:2006037 LA - en ID - M2AN_2006__40_5_939_0 ER -
%0 Journal Article %A Gugat, Martin %A Herty, Michaël %A Klar, Axel %A Leugering, Gunter %T Conservation law constrained optimization based upon front-tracking %J ESAIM: Modélisation mathématique et analyse numérique %D 2006 %P 939-960 %V 40 %N 5 %I EDP-Sciences %U http://www.numdam.org/articles/10.1051/m2an:2006037/ %R 10.1051/m2an:2006037 %G en %F M2AN_2006__40_5_939_0
Gugat, Martin; Herty, Michaël; Klar, Axel; Leugering, Gunter. Conservation law constrained optimization based upon front-tracking. ESAIM: Modélisation mathématique et analyse numérique, Tome 40 (2006) no. 5, pp. 939-960. doi : 10.1051/m2an:2006037. http://www.numdam.org/articles/10.1051/m2an:2006037/
[1] Resurrection of second order models of traffic flow? SIAM J. Appl. Math. 60 (2000) 916-938. | Zbl
and ,[2] Hyperbolic Systems of Conservation Laws. Oxford University Press, Oxford (2000). | MR | Zbl
,[3] Polygonal approximations of solutions of the initial value problem for a conservation law. J. Math. Anal. Appl. 38 (1972) 33-41. | Zbl
,[4] Nonlinear optimization in gas networks, in Modeling, Simulation and Optimization of Complex Processes, H.G. Bock, E. Kostina, H.X. Phu, R. Ranacher Eds. (2005) 139-148. | Zbl
and ,[5] Optimal nodal control of networked hyperbolic systems: Evaluation of derivatives. AMO Advanced Modeling and Optimization 7 (2005) 9-37.
,[6] Modelling, stabilization and control of flow in networks of open channels, in Online optimization of large scale systems, M. Grötschel, S.O. Krumke, J. Rambau Eds., Springer (2001) 251-270. | Zbl
, , and ,[7] Global controllability between steady supercritical flows in channel networks. Math. Meth. Appl. Sci. (2003) 781-802. | Zbl
, and ,[8] Optimal control for traffic flow networks. J. Optim. Theory Appl. 126 (2005) 589-616. | Zbl
, , and ,[9] Verkehrsdynamik. Springer-Verlag, Berlin, Heidelberg, New York (1997).
,[10] Unconditionally stable splitting methods for the shallow water equations. BIT 39 (1999) 451-472. | Zbl
, and ,[11] On scalar conservation laws in one-dimension, in Ideas and Methods in Mathematical Analysis, Stochastics and Applications S. Albeverio, J. Fenstad, H. Holden, T. Lindstrøm Eds. (1992) 480-509. | Zbl
and ,[12] A mathematical model of traffic flow on a network of unidirectional roads. SIAM J. Math. Anal. 26 (1995) 999-1017. | Zbl
and ,[13] Front tracking for hyperbolic conservation laws. Springer, New York, Berlin, Heidelberg (2002). | MR | Zbl
and ,[14] A numerical method for first order nonlinear scalar conservation laws in one-dimension. Comput. Math. Anal. 15 (1988) 595-602. | Zbl
, and ,[15] First order quasi linear equations in several independent variables. Math. USSR Sbornik, 10 (1970) 217-243. | Zbl
,[16] Numerical methods for conservation laws. Birkhäuser Verlag, Basel, Boston, Berlin (1990). | MR | Zbl
,[17] On kinematic waves. Proc. Roy. Soc. Lond. A229 (1955) 281-345. | Zbl
and ,[18] Shock waves and reaction diffusion equations. Springer, New York, Berlin, Heidelberg (1994). | MR | Zbl
,[19] A sensitivity and adjoint calculus for discontinuous solutions of hyperbolic conservation laws with source terms. SIAM J. Control Optim. 41 (2002) 740-797. | Zbl
,[20] Adjoint-based derivative computations for the optimal control of discontinuous solutions of hyperbolic conservation laws. Syst. Control Lett. 3 (2003) 309-324. | Zbl
,Cité par Sources :