We consider the use of finite volume methods for the approximation of a parabolic variational inequality arising in financial mathematics. We show, under some regularity conditions, the convergence of the upwind implicit finite volume scheme to a weak solution of the variational inequality in a bounded domain. Some results, obtained in comparison with other methods on two dimensional cases, show that finite volume schemes can be accurate and efficient.
Mots clés : american option, variational inequality, finite volume method, convergence of numerical scheme
@article{M2AN_2006__40_2_311_0, author = {Berton, Julien and Eymard, Robert}, title = {Finite volume methods for the valuation of american options}, journal = {ESAIM: Mod\'elisation math\'ematique et analyse num\'erique}, pages = {311--330}, publisher = {EDP-Sciences}, volume = {40}, number = {2}, year = {2006}, doi = {10.1051/m2an:2006011}, mrnumber = {2241825}, zbl = {1137.91427}, language = {en}, url = {http://www.numdam.org/articles/10.1051/m2an:2006011/} }
TY - JOUR AU - Berton, Julien AU - Eymard, Robert TI - Finite volume methods for the valuation of american options JO - ESAIM: Modélisation mathématique et analyse numérique PY - 2006 SP - 311 EP - 330 VL - 40 IS - 2 PB - EDP-Sciences UR - http://www.numdam.org/articles/10.1051/m2an:2006011/ DO - 10.1051/m2an:2006011 LA - en ID - M2AN_2006__40_2_311_0 ER -
%0 Journal Article %A Berton, Julien %A Eymard, Robert %T Finite volume methods for the valuation of american options %J ESAIM: Modélisation mathématique et analyse numérique %D 2006 %P 311-330 %V 40 %N 2 %I EDP-Sciences %U http://www.numdam.org/articles/10.1051/m2an:2006011/ %R 10.1051/m2an:2006011 %G en %F M2AN_2006__40_2_311_0
Berton, Julien; Eymard, Robert. Finite volume methods for the valuation of american options. ESAIM: Modélisation mathématique et analyse numérique, Tome 40 (2006) no. 2, pp. 311-330. doi : 10.1051/m2an:2006011. http://www.numdam.org/articles/10.1051/m2an:2006011/
[1] Convergence of American option values from discrete- to continuous-time financial models. Math. Finance 4 (1994) 289-304. | Zbl
and ,[2] A quantization algorithm for solving multi-dimensional discrete-time optimal stopping problems. Bernoulli 9 (2003) 1003-1049. | Zbl
and ,[3] Convergence of numerical Schemes for problems arising in Finance theory. Math. Mod. Meth. Appl. Sci. 5 (1995) 125-143. | Zbl
, and ,[4] Boiling in porous media: model and simulations. Transport Porous Med. 60 (2005) 1-31.
, , and ,[5] Applications des inéquations variationnelles en contrôle stochastique, Dunod, Paris (1978). Application of variational inequalities in stochastic control, North Holland (1982). | MR | Zbl
and ,[6] Une méthode de volumes finis pour le calcul des options américaines, Congrès d'Analyse Numérique. La Grande Motte, France (2003). http://www.math.univ-montp2.fr/canum03/
and ,[7] Méthodes de volumes finis pour des problèmes de mathématiques financières. Thèse de l'Université de Marne-la-Vallée, France (in preparation).
,[8] Numerical evaluation of multivariate contingent claims. Rev. Financ. Stud. 2 (1989) 241-250.
, and ,[9] The valuation of the American put option. J. Financ. 32 (1977) 449-462.
and ,[10] Analyse fonctionnelle (Théorie et applications). Dunod, Paris (1999). | MR | Zbl
,[11] American option valuation: new bounds, approximations, and a comparison of existing methods securities using simulation. Rev. Financ. Stud. 9 (1996) 1221-1250.
and ,[12] Alternative characterizations of American put options. Math. Financ. 2 (1992) 87-106. | Zbl
, and ,[13] Options pricing: A simplified approach. J. Financ. Econ. 7 (1979) 229-263. | Zbl
, and ,[14] Some mathematical results in the pricing of American options, Eur. J. Appl. Math. 4 (1993) 381-398. | Zbl
, , and ,[15] Finite Volume Methods, in Handb. Numer. Anal., Ph. Ciarlet and J.L. Lions (Eds.) 7 (2000) 715-1022. | Zbl
, and ,[16] Convergence of finite volume schemes for semilinear convection diffusion equations, Numer. Math. 82 (1999) 90-116. | Zbl
, and ,[17] Convergence of a finite volume scheme for nonlinear degenerate parabolic equations, Numer. Math. 92 (2001) 41-82. | Zbl
, , and ,[18] Sparse-grid finite-volume multigrid for 3D-problems. Adv. Comput. Math 4 (1995) 83-110. | Zbl
,[19] Variational inequalities and the pricing of American options. Acta Appl. Math. 21 3 (1990) 263-289. | Zbl
, and ,[20] Multinomial approximating models for options with k-state variables. Manage. Sci. 37 (1991) 1640-1652. | Zbl
and ,[21] Linear and quasi-linear equations of parabolic type. Translated from the Russian by S. Smith. Transl. Math. Monogr. (AMS) 23 (1968) xi+648. | Zbl
, and ,[22] Introduction au calcul stochastique appliqué à la finance. Ellipses, Paris, New York, London (1997) 176. | MR | Zbl
and ,[23] Iterative methods for sparse linear systems. First edition, SIAM (1996). | Zbl
,[24] A numerical analysis of variational valuation techniques for derivative securities, Appl. Math. Comput. 159 (2004) 171-198. | Zbl
, and ,[25] Parabolic A.D.I. methods for pricing American options on two stocks, Math. Oper. Res. 27 (2002) 121-149. | Zbl
and ,[26] A finite volume approach for contingent claims valuation, IMA J. Numer. Anal. 21 (2001) 703-731. | Zbl
, and ,Cité par Sources :