In this paper we solve the time-dependent incompressible Navier-Stokes equations by splitting the non-linearity and incompressibility, and using discontinuous or continuous finite element methods in space. We prove optimal error estimates for the velocity and suboptimal estimates for the pressure. We present some numerical experiments.
Mots-clés : operator splitting, time-dependent Navier-Stokes, SIPG
@article{M2AN_2005__39_6_1115_0, author = {Girault, Vivette and Rivi\`ere, B\'eatrice and Wheeler, Mary F.}, title = {A splitting method using discontinuous {Galerkin} for the transient incompressible {Navier-Stokes} equations}, journal = {ESAIM: Mod\'elisation math\'ematique et analyse num\'erique}, pages = {1115--1147}, publisher = {EDP-Sciences}, volume = {39}, number = {6}, year = {2005}, doi = {10.1051/m2an:2005048}, mrnumber = {2195907}, zbl = {1085.76037}, language = {en}, url = {http://www.numdam.org/articles/10.1051/m2an:2005048/} }
TY - JOUR AU - Girault, Vivette AU - Rivière, Béatrice AU - Wheeler, Mary F. TI - A splitting method using discontinuous Galerkin for the transient incompressible Navier-Stokes equations JO - ESAIM: Modélisation mathématique et analyse numérique PY - 2005 SP - 1115 EP - 1147 VL - 39 IS - 6 PB - EDP-Sciences UR - http://www.numdam.org/articles/10.1051/m2an:2005048/ DO - 10.1051/m2an:2005048 LA - en ID - M2AN_2005__39_6_1115_0 ER -
%0 Journal Article %A Girault, Vivette %A Rivière, Béatrice %A Wheeler, Mary F. %T A splitting method using discontinuous Galerkin for the transient incompressible Navier-Stokes equations %J ESAIM: Modélisation mathématique et analyse numérique %D 2005 %P 1115-1147 %V 39 %N 6 %I EDP-Sciences %U http://www.numdam.org/articles/10.1051/m2an:2005048/ %R 10.1051/m2an:2005048 %G en %F M2AN_2005__39_6_1115_0
Girault, Vivette; Rivière, Béatrice; Wheeler, Mary F. A splitting method using discontinuous Galerkin for the transient incompressible Navier-Stokes equations. ESAIM: Modélisation mathématique et analyse numérique, Tome 39 (2005) no. 6, pp. 1115-1147. doi : 10.1051/m2an:2005048. http://www.numdam.org/articles/10.1051/m2an:2005048/
[1] Sobolev Spaces. Academic Press, New York (1975). | MR | Zbl
,[2] A conservative adaptive projection method for the variable density incompressible Navier-Stokes equations. Technical Report LNBL-39075, UC-405 (1996). | Zbl
, , , and ,[3] A discontinuous hp finite element method for convection-diffusion problems. Comput. Methods Appl. Mech. Engrg. 175 (1999) 311-341. | Zbl
and ,[4] Error estimates for an operator-splitting method for incompressible flows. Appl. Numer. Math. 51 (2004) 1-17. | Zbl
and ,[5] A fractional-step method for the incompressible Navier-Stokes equations related to a predictor-multicorrector algorithm. Int. J. Numer. Meth. Fl. 28 (1997) 1391-1419. | Zbl
, and ,[6] The finite element methods for elliptic problems. North-Holland, Amsterdam (1978). | MR | Zbl
,[7] Numerical solution of the Navier-Stokes equations. Math. Comp. 22 (1968) 745-762. | Zbl
,[8] Conforming and non conforming finite element methods for solving the stationary Stokes equations. RAIRO Anal. Numér. R3 (1973) 33-76. | Numdam | Zbl
and ,[9] Zbl
and J .Proft, Discontinuous and coupled continuous/discontinuous Galerkin methods for the shallow water equations. Comput. Methods Appl. Mech. Engrg. 191 (2002) 4721-4746. |[10] Compatible algorithms for coupled flow and transport. Comput. Methods Appl. Mech. Engrg. (2003) 2565-2580. | Zbl
, and ,[11] The convergence of two numerical schemes for the Navier-Stokes equations. Numer. Math. 55 (1989) 33-60. | Zbl
and ,[12] Two-grid finite-element schemes for the steady Navier-Stokes problem in polyhedra. Portugal. Math. 58 (2001) 25-57. | Zbl
and ,[13] Finite element methods for Navier-Stokes equations. Lecture Notes in Math. 749, Springer-Verlag, Berlin, Heidelberg, New-York (1979). | MR | Zbl
and ,[14] A discontinuous Galerkin method with non-overlapping domain decomposition for the Stokes and Navier-Stokes problems. Math. Comp. 74 (2005) 53-84. | Zbl
, and ,[15] Finite element methods for Incompressible Viscous Flows, in Numerical Methods for Fluids (Part 3), Handbook of Numerical Analysis, 9, Elsevier, North-Holland (2003). | MR | Zbl
,[16] Elliptic problems in nonsmooth domains, Pitman Monogr. Studies Pure Appl. Math. 24, Pitman, Boston, MA (1985). | MR | Zbl
,[17] On the approximation of the unsteady Navier-Stokes equations by finite element projection methods. Numer. Math. 80 (1998) 207-238. | Zbl
and ,[18] Velocity-correction projection methods for incompressible flows. SIAM J. Numer. Anal. 41 (2003) 112-134. | Zbl
and ,[19] A new class of truly consistent splitting schemes for incompressible flows. J. Comput. Phys. 192 (2003) 262-276. | Zbl
and ,[20] A discontinuous subgrid eddy viscosity method for the time-dependent Navier-Stokes equations. SIAM J. Numer. Anal. (2005), to appear. | MR | Zbl
and ,[21] On a finite element method for solving the neutron transport equation, in Mathematical Aspects of Finite Element Methods in Partial Differential Equations, C.A. de Boor Ed., Academic Press (1974) 89-123. | Zbl
and ,[22] Problèmes aux Limites non Homogènes et Applications, I. Dunod, Paris (1968). | Zbl
and ,[23] Quelques méthodes de résolution des problèmes aux limites non linéaires. Dunod, Paris (1969). | MR | Zbl
,[24] Factorization methods for the numerical approximation of Navier-Stokes equations. Comput. Methods Appl. Mech. Engrg. 188 (2000) 505-526. | Zbl
, and ,[25] On Chorin's projection method for the incompressible Navier-Stokes equations, Navier-Stokes equations: Theory and Numerical Methods, R. Rautmann et al. Eds., Springer (1992). | Zbl
,[26] Improved energy estimates for interior penalty, constrained and discontinuous Galerkin methods for elliptic problems. Part I. Comput. Geosci. 3 (1999) 337-360. | Zbl
, and ,[27] Sur l'approximation de la solution des equations de Navier-Stokes par la méthode des pas fractionnaires (I), (II). Arch. Rational Mech. Anal. 33 (1969) 377-385. | Zbl
,[28] Navier-Stokes equations. Theory and numerical analysis. North-Holland, Amsterdam (1979). | MR | Zbl
,[29] On discrete projection methods for the incompressible Navier-Stokes equations: an algorithmic approach. Comput. Methods Appl. Mech. Engrg. 143 (1997) 271-288. | Zbl
,[30] An elliptic collocation-finite element method with interior penalties. SIAM J. Numer. Anal. 15 (1978) 152-161. | Zbl
,[31] The method of fractional steps. The solution of problems of mathematical physics in several variables. Springer-Verlag, New York (1971). | MR | Zbl
,Cité par Sources :