We study the propagation of electromagnetic waves in a guide the section of which is a thin annulus. Owing to the presence of a small parameter, explicit approximations of the TM and TE eigenmodes are obtained. The cases of smooth and non smooth boundaries are presented.
Mots-clés : closed thin waveguides, asymptotic approximations
@article{M2AN_2005__39_6_1271_0, author = {Turbe, Nicole and Ratier, Louis}, title = {About asymptotic approximations in thin waveguides}, journal = {ESAIM: Mod\'elisation math\'ematique et analyse num\'erique}, pages = {1271--1284}, publisher = {EDP-Sciences}, volume = {39}, number = {6}, year = {2005}, doi = {10.1051/m2an:2005045}, mrnumber = {2195912}, language = {en}, url = {http://www.numdam.org/articles/10.1051/m2an:2005045/} }
TY - JOUR AU - Turbe, Nicole AU - Ratier, Louis TI - About asymptotic approximations in thin waveguides JO - ESAIM: Modélisation mathématique et analyse numérique PY - 2005 SP - 1271 EP - 1284 VL - 39 IS - 6 PB - EDP-Sciences UR - http://www.numdam.org/articles/10.1051/m2an:2005045/ DO - 10.1051/m2an:2005045 LA - en ID - M2AN_2005__39_6_1271_0 ER -
%0 Journal Article %A Turbe, Nicole %A Ratier, Louis %T About asymptotic approximations in thin waveguides %J ESAIM: Modélisation mathématique et analyse numérique %D 2005 %P 1271-1284 %V 39 %N 6 %I EDP-Sciences %U http://www.numdam.org/articles/10.1051/m2an:2005045/ %R 10.1051/m2an:2005045 %G en %F M2AN_2005__39_6_1271_0
Turbe, Nicole; Ratier, Louis. About asymptotic approximations in thin waveguides. ESAIM: Modélisation mathématique et analyse numérique, Tome 39 (2005) no. 6, pp. 1271-1284. doi : 10.1051/m2an:2005045. http://www.numdam.org/articles/10.1051/m2an:2005045/
[1] Analyse mathématique et calcul numérique pour les sciences et les techniques. Masson, Paris (1988). | Zbl
and ,[2] Mathematical analysis of electromagnetic open waveguides. RAIRO Modél. Math. Anal. Numér. 29 (1995) 505-575. | Numdam | Zbl
and ,[3] Hill's Equation. Interscience, New York (1966). | Zbl
and ,[4] Non-Homogeneous Media and Vibration Theory. Springer, Berlin (1980). | Zbl
,[5] Vibrations and coupling of continuous systems. Asymptotic methods. Springer, Berlin (1989). | Zbl
and ,Cité par Sources :