The mathematical theory of the passage from compressible to incompressible fluid flow is reviewed.
Mots clés : incompressible limit, Mach number
@article{M2AN_2005__39_3_441_0, author = {Schochet, Steven}, title = {The mathematical theory of low {Mach} number flows}, journal = {ESAIM: Mod\'elisation math\'ematique et analyse num\'erique}, pages = {441--458}, publisher = {EDP-Sciences}, volume = {39}, number = {3}, year = {2005}, doi = {10.1051/m2an:2005017}, mrnumber = {2157144}, zbl = {1094.35094}, language = {en}, url = {http://www.numdam.org/articles/10.1051/m2an:2005017/} }
TY - JOUR AU - Schochet, Steven TI - The mathematical theory of low Mach number flows JO - ESAIM: Modélisation mathématique et analyse numérique PY - 2005 SP - 441 EP - 458 VL - 39 IS - 3 PB - EDP-Sciences UR - http://www.numdam.org/articles/10.1051/m2an:2005017/ DO - 10.1051/m2an:2005017 LA - en ID - M2AN_2005__39_3_441_0 ER -
%0 Journal Article %A Schochet, Steven %T The mathematical theory of low Mach number flows %J ESAIM: Modélisation mathématique et analyse numérique %D 2005 %P 441-458 %V 39 %N 3 %I EDP-Sciences %U http://www.numdam.org/articles/10.1051/m2an:2005017/ %R 10.1051/m2an:2005017 %G en %F M2AN_2005__39_3_441_0
Schochet, Steven. The mathematical theory of low Mach number flows. ESAIM: Modélisation mathématique et analyse numérique, Tome 39 (2005) no. 3, pp. 441-458. doi : 10.1051/m2an:2005017. http://www.numdam.org/articles/10.1051/m2an:2005017/
[1] Incompressible limit of the nonisentropic Euler equations with the solid wall boundary conditions. Adv. Differential Equations, to appear. | MR | Zbl
,[2] Low Mach number flows in time-dependent domains. SIAM J. Appl. Math. 63 (2003) 2020-2041. | Zbl
,[3] On the incompressible limit of the compressible euler equation. Japan J. Appl. Math. 4 (1987) 455-488. | Zbl
,[4] Density variations in weakly compressible flows. Phys. Fluids A 4 (1992) 945-954. | Zbl
, and ,[5] Low Mach number limit of viscous polytropic flows: formal asymptotics in the periodic case. Stud. Appl. Math. 109 (2002) 125-149. | Zbl
, , and ,[6] Problems with different time scales for nonlinear partial differential equations. SIAM J. Appl. Math. 42 (1982) 704-718. | Zbl
and ,[7] Initialization of the primitive equations by the bounded derivative method. J. Atmospheric Sci. 37 (1980) 1424-1436.
, and ,[8] Justification de l'optique géométrique non linéaire pour un système de lois de conservation. Duke Math. J. 87 (1997) 213-263. | Zbl
,[9] A numerical method for solving incompressible viscous flow problems. J. Comput. Phys. 2 (1967) 12-26. | Zbl
,[10] Zero Mach number limit for compressible flows with periodic boundary conditions. Amer. J. Math. 124 (2002) 1153-1219. | Zbl
,[11] Low Mach number limit of viscous compressible flows in the whole space. R. Soc. Lond. Proc. Ser. A Math. Phys. Eng. Sci. 455 (1999) 2271-2279. | Zbl
and ,[12] Incompressible limit for solutions of the isentropic navier-stokes equations with dirichlet boundary conditions. J. Math. Pures Appl. 78 (1999) 461-471. | Zbl
, , and ,[13] The incompressible limit of solutions of the two-dimensional compressible Euler system with degenerating initial data. C. R. Math. Acad. Sci. Paris 336 (2003) 471-474. | Zbl
and ,[14] The motion of slightly compressible fluids viewed as a motion with strong constraining force. Ann. Math. 105 (1977) 141-200. | Zbl
,[15] Motion of slightly compressible fluids in a bounded domain I. Comm. Pure Appl. Math. 35 (1982) 451-485. | Zbl
,[16] Asymptotic of the solutions of hyperbolic equations with a skew-symmetric perturbation. J. Differential Equations 150 (1998) 363-384. | Zbl
,[17] Navier-Stokes equations for almost incompressible flow. SIAM J. Numer. Anal. 28 (1991) 1523-1547. | Zbl
and ,[18] All-time existence of classical solutions for slightly compressible flows. SIAM J. Math. Anal. 29 (1998) 652-672. | Zbl
and ,[19] On the stability of approximate solutions of hyperbolic-parabolic systems and the all-time existence of smooth, slightly compressible flows. Indiana Univ. Math. J. 51 (2002) 1339-1387. | Zbl
and ,[20] The zero-Mach limit of compressible flows. Comm. Math. Phys. 192 (1998) 543-554. | Zbl
,[21] The incompressible limit and the initial layer of the compressible Euler equation in . Math. Methods Appl. Sci. 20 (1997) 945-958. | Zbl
,[22] Singular limits for the compressible Euler equation in an exterior domain. J. Reine Angew. Math. 381 (1987) 1-36. | Zbl
,[23] Wave operators and the incompressible limit of the compressible Euler equation. Comm. Math. Phys. 110 (1987) 519-524. | Zbl
,[24] Singular limits for the compressible Euler equation in an exterior domain. II. Bodies in a uniform flow. Osaka J. Math. 26 (1989) 399-410. | Zbl
,[25] Coherent and focusing multidimensional nonlinear geometric optics. Ann. Sci. École Norm. Sup. (4) 28 (1995) 51-113. | Numdam | Zbl
, and ,[26] Dense oscillations for the compressible 2-d Euler equations, in Nonlinear partial differential equations and their applications. Collège de France Seminar, Vol. XIII (Paris, 1994/1996), Longman, Harlow. Pitman Res. Notes Math. Ser. 391 (1998) 134-166. | Zbl
, and ,[27] The Cauchy problem for quasi-linear symmetric hyperbolic systems. Arch. Rational Mech. Anal. 58 (1975) 181-205. | Zbl
,[28] Singular perturbations of quasilinear hyperbolic systems with large parameters and the incompressible limit of compressible fluids. Comm. Pure Appl. Math. 34 (1981) 481-524. | Zbl
and ,[29] Compressible and incompressible fluids. Comm. Pure Appl. Math. 35 (1982) 629-653. | Zbl
and ,[30] Semi-implicit extension of a Godunov-type scheme based on low Mach number asymptotics. I. One-dimensional flow. J. Comput. Phys. 121 (1995) 213-237. | Zbl
,[31] Asymptotic adaptive methods for multi-scale problems in fluid mechanics. J. Engrg. Math. 39 (2001) 261-343. | Zbl
, , , , , , and ,[32] Problems with different time scales for partial differential equations. Comm. Pure Appl. Math. 33 (1980) 399-439. | Zbl
,[33] On the incompressible limit of the compressible navier-stokes equations. Comm. Partial Differential Equations 20 (1995) 677-707. | Zbl
,[34] Mathematical topics in fluid mechanics, Vol. 1, Oxford Lecture Series in Mathematics and its Applications. The Clarendon Press Oxford University Press, New York 3 (1996). | MR | Zbl
,[35] Incompressible limit for a viscous compressible fluid. J. Math. Pures Appl. 77 (1998) 585-627. | Zbl
and ,[36] Une approche locale de la limite incompressible. C. R. Acad. Sci. Paris Sér. I Math. 329 (1999) 387-392. | Zbl
and ,[37] Asymptotic single and multiple scale expansions in the low Mach number limit. SIAM J. Appl. Math. 60 (2000) 256-271. | Zbl
,[38] The incompressible limit of the non-isentropic euler equations. Arch. Rational Mech. Anal. 158 (2001) 61-90. | Zbl
and ,[39] Averaging theorems for conservative systems and the weakly compressible Euler equations. J. Differential Equations 187 (2003) 106-183. | Zbl
and ,[40] Low-Mach-number asymptotics of the Navier-Stokes equations. J. Engrg. Math. 34 (1998) 97-109. | Zbl
,[41] Analytical theory of subsonic and supersonic flows, in Handbuch der Physik. Springer-Verlag, Berlin 9 (1960) 1-161.
,[42] The compressible Euler equations in a bounded domain: existence of solutions and the incompressible limit. Comm. Math. Phys. 104 (1986) 49-75. | Zbl
,[43] Asymptotics for symmetric hyperbolic systems with a large parameter. J. Differential Equations 75 (1988) 1-27. | Zbl
,[44] Fast singular limits of hyperbolic PDEs. J. Differential Equations 114 (1994) 476-512. | Zbl
,[45] On the singular incompressible limit of inviscid compressible fluids. J. Math. Fluid Mech. 2 (2000) 107-125. | Zbl
,[46] The lifespan of smooth solutions to the three-dimensional compressible Euler equations and the incompressible limit. Indiana Univ. Math J. 40 (1991) 535-550. | Zbl
,[47] Initial and boundary value problems in dissipative gas dynamics. Phys. Fluids 10 (1967) 24-34. | Zbl
,[48] Navier-Stokes equations. Theory and numerical analysis. North-Holland Publishing Co., Amsterdam (1977). | MR | Zbl
,[49] The incompressible limit and initial layer of the compressible Euler equation. J. Math. Kyoto U. 26 (1986) 323-331. | Zbl
,[50] The linear pressure dependence of the viscosity at high densities. Physica A 256 (1998) 39-56.
,[51] Perturbation methods in fluid mechanics. Appl. Math. Mech. 8. Academic Press, New York (1964). | MR | Zbl
,[52] The equations of nearly incompressible fluids. I. Hydrodynamics, turbulence, and waves. Phys. Fluids A 3 (1991) 69-82. | Zbl
and ,Cité par Sources :