Time-delay regularization of anisotropic diffusion and image processing
ESAIM: Modélisation mathématique et analyse numérique, Tome 39 (2005) no. 2, pp. 231-251.

We study a time-delay regularization of the anisotropic diffusion model for image denoising of Perona and Malik [IEEE Trans. Pattern Anal. Mach. Intell 12 (1990) 629-639], which has been proposed by Nitzberg and Shiota [IEEE Trans. Pattern Anal. Mach. Intell 14 (1998) 826-835]. In the two-dimensional case, we show the convergence of a numerical approximation and the existence of a weak solution. Finally, we show some experiments on images.

DOI : 10.1051/m2an:2005010
Classification : 68U10, 35K55, 35M10
Mots clés : image restoration, edge detection, Perona-Malik equation, time-delay regularization
@article{M2AN_2005__39_2_231_0,
     author = {Belahmidi, Abdelmounim and Chambolle, Antonin},
     title = {Time-delay regularization of anisotropic diffusion and image processing},
     journal = {ESAIM: Mod\'elisation math\'ematique et analyse num\'erique},
     pages = {231--251},
     publisher = {EDP-Sciences},
     volume = {39},
     number = {2},
     year = {2005},
     doi = {10.1051/m2an:2005010},
     mrnumber = {2143948},
     zbl = {1101.68102},
     language = {en},
     url = {http://www.numdam.org/articles/10.1051/m2an:2005010/}
}
TY  - JOUR
AU  - Belahmidi, Abdelmounim
AU  - Chambolle, Antonin
TI  - Time-delay regularization of anisotropic diffusion and image processing
JO  - ESAIM: Modélisation mathématique et analyse numérique
PY  - 2005
SP  - 231
EP  - 251
VL  - 39
IS  - 2
PB  - EDP-Sciences
UR  - http://www.numdam.org/articles/10.1051/m2an:2005010/
DO  - 10.1051/m2an:2005010
LA  - en
ID  - M2AN_2005__39_2_231_0
ER  - 
%0 Journal Article
%A Belahmidi, Abdelmounim
%A Chambolle, Antonin
%T Time-delay regularization of anisotropic diffusion and image processing
%J ESAIM: Modélisation mathématique et analyse numérique
%D 2005
%P 231-251
%V 39
%N 2
%I EDP-Sciences
%U http://www.numdam.org/articles/10.1051/m2an:2005010/
%R 10.1051/m2an:2005010
%G en
%F M2AN_2005__39_2_231_0
Belahmidi, Abdelmounim; Chambolle, Antonin. Time-delay regularization of anisotropic diffusion and image processing. ESAIM: Modélisation mathématique et analyse numérique, Tome 39 (2005) no. 2, pp. 231-251. doi : 10.1051/m2an:2005010. http://www.numdam.org/articles/10.1051/m2an:2005010/

[1] L. Alvarez, F. Guichard, P.-L. Lions and J.-M. Morel, Axioms and fundamental equations of image processing. Arch. Rational Mech. Anal. 123 (1993) 199-257. | Zbl

[2] A. Belahmidi, Équations aux dérivées partielles appliquées à la restauration et à l'agrandissement des images. Ph.D. thesis, CEREMADE, Université de Paris-Dauphine, Paris (2003). Available at http://tel.ccsd.cnrs.fr.

[3] J. Canny, A computational approach to edge detection. IEEE Trans. Pattern Anal. Mach. Intell. 8 (1986) 679-698.

[4] F. Catté, P.-L. Lions, J.-M. Morel and T. Coll, Image selective smoothing and edge detection by nonlinear diffusion. SIAM J. Numer. Anal. 29 (1992) 182-193. | Zbl

[5] P.G. Ciarlet, Introduction à l'analyse numérique matricielle et à l'optimisation. Collection Mathématiques Appliquées pour la Maîtrise. Masson, Paris (1982). | Zbl

[6] G.H. Cottet and M. El-Ayyadi, A volterra type model for image processing. IEEE Trans. Image Process. 7 (1998) 292-303.

[7] S. Esedoḡlu, An analysis of the Perona-Malik scheme. Comm. Pure Appl. Math. 54 (2001) 1442-1487. | Zbl

[8] Y. Giga and S. Goto, Motion of hypersurfaces and geometric equations. J. Math. Soc. Japan 44 (1992) 99-111. | Zbl

[9] D. Gilbarg and N.S. Trudinger, Elliptic partial differential equations of second order. Classics in Mathematics. Springer-Verlag, Berlin (2001). Reprint of the 1998 edition. | MR | Zbl

[10] E. Heinz, An elementary analytic theory of the degree of mapping in n-dimensional space. J. Math. Mech. 8 (1959) 231-247. | Zbl

[11] K. Höllig and J.A. Nohel, A diffusion equation with a nonmonotone constitutive function, in Systems of nonlinear partial differential equations (Oxford, 1982), Reidel, Dordrecht. NATO Adv. Sci. Inst. Ser. C: Math. Phys. Sci. 111 (1983) 409-422. | Zbl

[12] O. Kavian, Introduction à la théorie des points critiques et applications aux problèmes elliptiques, volume 13 of Mathématiques & Applications (Berlin). Springer-Verlag, Paris (1993). | MR | Zbl

[13] B. Kawohl and N. Kutev, Maximum and comparison principle for one-dimensional anisotropic diffusion. Math. Ann. 311 (1998) 107-123. | Zbl

[14] S. Kichenassamy, The Perona-Malik paradox. SIAM J. Appl. Math. 57 (1997) 1328-1342. | Zbl

[15] D. Marr and E. Hildreth, Theory of edge detection. Proc. Roy. Soc. London B. 207 (1980) 187-217.

[16] N.G. Meyers, An L p e-estimate for the gradient of solutions of second order elliptic divergence equations. Ann. Scuola Norm. Sup. Pisa 17 (1963) 189-206. | Numdam | Zbl

[17] M. Nitzberg and T. Shiota, Nonlinear image filtering with edge and corner enhancement. IEEE Trans. Pattern Anal. Mach. Intell. 14 (1992) 826-833.

[18] P. Perona and J. Malik, Scale-space and edge detection using anisotropic diffusion. IEEE Trans. Pattern Anal. Mach. Intell. 12 (1990) 629-639.

[19] R.T. Whitaker and S.M. Pizer, A multi-scale approach to nonuniform diffusion. CVGIP: Image Underst. 57 (1993) 99-110.

[20] Y. You, W. Xu, A. Tannenbaum and M. Kaveh, Behavioral analysis of anisotropic diffusion in image processing. IEEE Trans. Image Process. 5 (1996) 1539-1553.

Cité par Sources :