We perform a complete study of the truncation error of the Gegenbauer series. This series yields an expansion of the Green kernel of the Helmholtz equation, , which is the core of the Fast Multipole Method for the integral equations. We consider the truncated series where the summation is performed over the indices . We prove that if is large enough, the truncated series gives rise to an error lower than as soon as satisfies where is the Lambert function, depends only on and are pure positive constants. Numerical experiments show that this asymptotic is optimal. Those results are useful to provide sharp estimates of the error in the fast multipole method for scattering computation.
Mots-clés : Gegenbauer, fast multipole method, truncation error
@article{M2AN_2005__39_1_183_0, author = {Carayol, Quentin and Collino, Francis}, title = {Error estimates in the fast multipole method for scattering problems. {Part} 2 : truncation of the {Gegenbauer} series}, journal = {ESAIM: Mod\'elisation math\'ematique et analyse num\'erique}, pages = {183--221}, publisher = {EDP-Sciences}, volume = {39}, number = {1}, year = {2005}, doi = {10.1051/m2an:2005008}, mrnumber = {2136205}, zbl = {1087.33007}, language = {en}, url = {http://www.numdam.org/articles/10.1051/m2an:2005008/} }
TY - JOUR AU - Carayol, Quentin AU - Collino, Francis TI - Error estimates in the fast multipole method for scattering problems. Part 2 : truncation of the Gegenbauer series JO - ESAIM: Modélisation mathématique et analyse numérique PY - 2005 SP - 183 EP - 221 VL - 39 IS - 1 PB - EDP-Sciences UR - http://www.numdam.org/articles/10.1051/m2an:2005008/ DO - 10.1051/m2an:2005008 LA - en ID - M2AN_2005__39_1_183_0 ER -
%0 Journal Article %A Carayol, Quentin %A Collino, Francis %T Error estimates in the fast multipole method for scattering problems. Part 2 : truncation of the Gegenbauer series %J ESAIM: Modélisation mathématique et analyse numérique %D 2005 %P 183-221 %V 39 %N 1 %I EDP-Sciences %U http://www.numdam.org/articles/10.1051/m2an:2005008/ %R 10.1051/m2an:2005008 %G en %F M2AN_2005__39_1_183_0
Carayol, Quentin; Collino, Francis. Error estimates in the fast multipole method for scattering problems. Part 2 : truncation of the Gegenbauer series. ESAIM: Modélisation mathématique et analyse numérique, Tome 39 (2005) no. 1, pp. 183-221. doi : 10.1051/m2an:2005008. http://www.numdam.org/articles/10.1051/m2an:2005008/
[1] Handbook of Mathematical Functions. Dover, New-York (1964).
and ,[2] Analysis of the truncation errors in the fast multipole method for scattering problems. J. Comput. Appl. Math. 115 (2000) 23-33. | Zbl
and ,[3] Weighted estimates for the Helmholtz equation and some applications. J. Funct. Anal. 150 (1997) 356-382. | Zbl
, and ,[4] Higher transcendental Functions. McGraw-Hill (1953). | MR
,[5] Développement et analyse d'une méthode multipôle multiniveau pour l'électromagnétisme. Ph.D. thesis, Université Paris VI Pierre et Marie Curie, rue Jussieu 75005 Paris (2002).
,[6] Error estimates in the fast multipole method for scattering problems. part 1: Truncation of the jacobi-anger series. ESAIM: M2AN 38 (2004) 371-394. | Numdam | Zbl
and ,[7] Uniform asymptotic formulae for functions with transition points. Trans. AMS 68 (1950) 224-257. | Zbl
,[8] Fast and Efficient Algorithms in Computational Electromagnetics. Artech House (2001).
, , and ,[9] The Fast Multipole Method for the wave equation: A pedestrian prescription. IEEE Antennas and Propagation Magazine 35 (1993) 7-12.
, and ,[10] Inverse Acoustic and Electromagnetic Scattering Theory. Springer-Verlag 93 (1992). | MR | Zbl
and ,[11] The fast multipole method. I. Error analysis and asymptotic complexity. SIAM J. Numer. Anal. 38 (2000) 98-128 (electronic). | Zbl
,[12] The fast multipole method: Numerical implementation. J. Comput. Physics 160 (2000) 196-240. | Zbl
,[13] Efficient fast multipole method for low frequency scattering. J. Comput. Physics 197 (2004) 341-363. | Zbl
and ,[14] Accuracy of fast multipole methods for maxwell's equations. IEEE Comput. Sci. Engrg. 5 (1998) 48-56.
and ,[15] Multipole translation theory for the three-dimensional Laplace and Helmholtz equations. SIAM J. Sci. Comput. 16 (1995) 865-897. | Zbl
and ,[16] Table of integrals, series, and products, 5th edition. Academic Press (1994). | MR | Zbl
, ,[17] Error analysis for the numerical evaluation of the diagonal forms of the scalar spherical addition theorem. SIAM J. Numer. Anal. 36 (1999) 906-921 (electronic). | Zbl
, and ,[18] Alternative proof of a sharpened form of Bernstein's inequality for Legendre polynomials. Applicable Anal. 14 (1982/83) 237-240. | Zbl
,[19] Corrigendum: “Alternative proof of a sharpened form of Bernstein's inequality for Legendre polynomials” [Appl. Anal. 14 (1982/83) 237-240; MR 84k:26017]. Appl. Anal. 50 (1993) 47. | Zbl
,[20] Acoustic and Electromagnetic Equation. Integral Representation for Harmonic Problems. Springer-Verlag 144 (2001). | MR | Zbl
,[21] Diagonal forms of the translation operators in the fast multipole algorithm for scattering problems. BIT 36 (1996) 333-358. | Zbl
,[22] A treatise on the theory of Bessel functions. Cambridge University Press (1966). | JFM | MR | Zbl
,Cité par Sources :