In order to handle the flow of a viscous incompressible fluid in a porous medium with cracks, the thickness of which cannot be neglected, we consider a model which couples the Darcy equations in the medium with the Stokes equations in the cracks by a new boundary condition at the interface, namely the continuity of the pressure. We prove that this model admits a unique solution and propose a mixed formulation of it. Relying on this formulation, we describe a finite element discretization and derive a priori and a posteriori error estimates. We present some numerical experiments that are in good agreement with the analysis.
Mots-clés : Darcy and Stokes equations, finite elements, error estimates
@article{M2AN_2005__39_1_7_0, author = {Bernardi, Christine and Hecht, Fr\'ed\'eric and Pironneau, Olivier}, title = {Coupling {Darcy} and {Stokes} equations for porous media with cracks}, journal = {ESAIM: Mod\'elisation math\'ematique et analyse num\'erique}, pages = {7--35}, publisher = {EDP-Sciences}, volume = {39}, number = {1}, year = {2005}, doi = {10.1051/m2an:2005007}, mrnumber = {2136198}, zbl = {1079.76041}, language = {en}, url = {http://www.numdam.org/articles/10.1051/m2an:2005007/} }
TY - JOUR AU - Bernardi, Christine AU - Hecht, Frédéric AU - Pironneau, Olivier TI - Coupling Darcy and Stokes equations for porous media with cracks JO - ESAIM: Modélisation mathématique et analyse numérique PY - 2005 SP - 7 EP - 35 VL - 39 IS - 1 PB - EDP-Sciences UR - http://www.numdam.org/articles/10.1051/m2an:2005007/ DO - 10.1051/m2an:2005007 LA - en ID - M2AN_2005__39_1_7_0 ER -
%0 Journal Article %A Bernardi, Christine %A Hecht, Frédéric %A Pironneau, Olivier %T Coupling Darcy and Stokes equations for porous media with cracks %J ESAIM: Modélisation mathématique et analyse numérique %D 2005 %P 7-35 %V 39 %N 1 %I EDP-Sciences %U http://www.numdam.org/articles/10.1051/m2an:2005007/ %R 10.1051/m2an:2005007 %G en %F M2AN_2005__39_1_7_0
Bernardi, Christine; Hecht, Frédéric; Pironneau, Olivier. Coupling Darcy and Stokes equations for porous media with cracks. ESAIM: Modélisation mathématique et analyse numérique, Tome 39 (2005) no. 1, pp. 7-35. doi : 10.1051/m2an:2005007. http://www.numdam.org/articles/10.1051/m2an:2005007/
[1] A priori and a posteriori analysis of finite volume discretizations of Darcy's equations. Numer. Math. 96 (2003) 17-42. | Zbl
, and ,[2] Vorticity-velocity-pressure formulation for Navier-Stokes equations. Comput. Vis. Sci. 6 (2004) 47-52. | Zbl
, , and ,[3] Vector potentials in three-dimensional nonsmooth domains. Math. Meth. Appl. Sci. 21 (1998) 823-864. | Zbl
, , and ,[4] Les équations de Stokes et de Navier-Stokes avec des conditions aux limites sur la pression. Nonlinear Partial Differ. Equ. Appl., Collège de France Seminar IX (1988) 179-264. | Zbl
, , and ,[5] Un problème variationnel abstrait. Application d'une méthode de collocation pour les équations de Stokes. C.R. Acad. Sci. Paris série I 303 (1986) 971-974. | Zbl
, and ,[6] Generalized inf-sup condition for Chebyshev spectral approximation of the Stokes problem. SIAM J. Numer. Anal. 25 (1988) 1237-1271. | Zbl
, and ,[7] The mortar method in the wavelet context. ESAIM: M2AN 35 (2001) 647-673. | EuDML | Numdam | Zbl
and ,[8] A posteriori error estimators for the Raviart-Thomas element. SIAM J. Numer. Anal. 33 (1996) 2431-2444. | Zbl
and ,[9] Modélisation et simulation numérique du transport de radon dans un milieu poreux fissuré ou fracturé. Problème direct et problèmes inverses comme outils d'aide à la prédiction sismique, Thesis, Université de Franche-Comté, Besançon (2002).
,[10] Conforming and nonconforming finite element methods for solving the stationary Stokes equations. RAIRO Anal. Numér. 7 (1973) 33-76. | Numdam | Zbl
and ,[11] Mathematical and numerical models for coupling surface and groundwater flows. Appl. Numer. Math. 43 (2002) 57-74. | Zbl
, and ,[12] Analysis of a domain decomposition method for the coupling of Stokes and Darcy equations, in Proc. of ENUMATH, F. Brezzi Ed., Springer-Verlag (to appear). | MR
and ,[13] Convergence analysis of a subdomain iterative method for the finite element approximation of the coupling of Stokes and Darcy equations. Comput. Vis. Sci. 6 (2004) 93-104.
and ,[14] Vorticity-velocity-pressure formulation for the Stokes problem. Math. Meth. Appl. Sci. 25 (2002) 1091-1119. | Zbl
,[15] First vorticity-velocity-pressure scheme for the Stokes problem, Internal Report 356, Institut Aérotechnique, Conservatoire National des Arts et Métiers, France (2002) (submitted).
, and ,[16] Maillages, applications aux éléments finis. Hermès, Paris (1999).
and ,[17] Nonisotropic grids. Handbook of Grid Generation, J.F. Thompson, B.K. Soni & N.P. Weatherhill Eds., CRC Press (1998).
and ,[18] Finite Element Methods for Navier-Stokes Equations, Theory and Algorithms. Springer-Verlag (1986). | Zbl
and ,[19] Construction d’une base de fonctions non conforme à divergence nulle dans . RAIRO Anal. Numér. 15 (1981) 119-150. | Numdam | Zbl
,[20] FreeFem++, see www.freefem.org.
and ,[21] Effects of spilled oil on coastal ecosystems, in the Proceedings of European Congress on Computational Methods in Applied Sciences and Engineering 2000, CD-ROM proceedings (2001).
, and ,[22] Effects of wave breaking action on flows in tidal-flats, in Computational Fluid Dynamics for the 21st Century, M. Hafez, K. Morinishi and J. Périaux Eds., Springer. Notes on Numerical Fluid Mechanics 78 (2001) 275-289.
, and ,[23] Coupling fluid flow with porous media flow 22-01 (2001). | MR | Zbl
, and ,[24] Mixed finite elements in . Numer. Math. 35 (1980) 315-341. | Zbl
,[25] Existence, uniqueness and approximation for generalized saddle point problems. SIAM J. Numer. Anal. 19 (1982) 349-357. | Zbl
,[26] A mixed finite element method for second order elliptic problems, Mathematical Aspects of Finite Element Methods. Springer, Berlin. Lect. Notes Math. 606 (1977) 292-315. | Zbl
and ,[27] Développement numérique de la formulation tourbillon-vitesse-pression pour le problème de Stokes. Thesis, Université Pierre et Marie Curie, Paris (1999).
,[28] Theory and Numerical Analysis of the Navier-Stokes Equations. North-Holland (1977). | Zbl
,[29] A Review of A Posteriori Error Estimation and Adaptive Mesh-Refinement Techniques. Wiley & Teubner (1996). | Zbl
,Cité par Sources :