In this paper we investigate the motion of a rigid ball in an incompressible perfect fluid occupying
Mots-clés : Euler equations, fluid-rigid body interaction, exterior domain, classical solutions
@article{M2AN_2005__39_1_79_0, author = {Ortega, Jaime H. and Rosier, Lionel and Takahashi, Tak\'eo}, title = {Classical solutions for the equations modelling the motion of a ball in a bidimensional incompressible perfect fluid}, journal = {ESAIM: Mod\'elisation math\'ematique et analyse num\'erique}, pages = {79--108}, publisher = {EDP-Sciences}, volume = {39}, number = {1}, year = {2005}, doi = {10.1051/m2an:2005002}, mrnumber = {2136201}, zbl = {1087.35081}, language = {en}, url = {https://www.numdam.org/articles/10.1051/m2an:2005002/} }
TY - JOUR AU - Ortega, Jaime H. AU - Rosier, Lionel AU - Takahashi, Takéo TI - Classical solutions for the equations modelling the motion of a ball in a bidimensional incompressible perfect fluid JO - ESAIM: Modélisation mathématique et analyse numérique PY - 2005 SP - 79 EP - 108 VL - 39 IS - 1 PB - EDP-Sciences UR - https://www.numdam.org/articles/10.1051/m2an:2005002/ DO - 10.1051/m2an:2005002 LA - en ID - M2AN_2005__39_1_79_0 ER -
%0 Journal Article %A Ortega, Jaime H. %A Rosier, Lionel %A Takahashi, Takéo %T Classical solutions for the equations modelling the motion of a ball in a bidimensional incompressible perfect fluid %J ESAIM: Modélisation mathématique et analyse numérique %D 2005 %P 79-108 %V 39 %N 1 %I EDP-Sciences %U https://www.numdam.org/articles/10.1051/m2an:2005002/ %R 10.1051/m2an:2005002 %G en %F M2AN_2005__39_1_79_0
Ortega, Jaime H.; Rosier, Lionel; Takahashi, Takéo. Classical solutions for the equations modelling the motion of a ball in a bidimensional incompressible perfect fluid. ESAIM: Modélisation mathématique et analyse numérique, Tome 39 (2005) no. 1, pp. 79-108. doi : 10.1051/m2an:2005002. https://www.numdam.org/articles/10.1051/m2an:2005002/
[1] Analyse fonctionnelle. Collection Mathématiques Appliquées pour la Maîtrise. [Collection of Applied Mathematics for the Master's Degree]. Masson, Paris (1983). Théorie et Applications. [Theory and applications]. | Zbl
,[2] H. and M. Tucsnak, Existence of solutions for the equations modelling the motion of a rigid body in a viscous fluid. Comm. Partial Differential Equations 25 (2000) 1019-1042. | Zbl
,
[3] On the controllability of
[4] On the null asymptotic stabilization of the two-dimensional incompressible Euler equations in a simply connected domain. SIAM J. Control Optim. 37 (1999) 1874-1896 (electronic). | Zbl
,[5] Existence of weak solutions for the motion of rigid bodies in a viscous fluid. Arch. Ration. Mech. Anal. 146 (1999) 59-71. | Zbl
and ,[6] On weak solutions for fluid-rigid structure interaction: compressible and incompressible models. Comm. Partial Differential Equations 25 (2000) 1399-1413. | Zbl
and ,[7] On the motion of rigid bodies in a viscous fluid. Appl. Math. 47 (2002) 463-484. Mathematical theory in fluid mechanics, Paseky (2001). | EuDML | Zbl
,[8] On the motion of rigid bodies in a viscous compressible fluid. Arch. Ration. Mech. Anal. 167 (2003) 281-308. | Zbl
,[9] On the motion of rigid bodies in a viscous incompressible fluid. J. Evol. Equ. 3 (2003) 419-441. Dedicated to Philippe Bénilan. | Zbl
,[10] On the steady self-propelled motion of a body in a viscous incompressible fluid. Arch. Ration. Mech. Anal. 148 (1999) 53-88. | Zbl
,[11] Strong solutions to the problem of motion of a rigid body in a Navier-Stokes liquid under the action of prescribed forces and torques. In Nonlinear problems in mathematical physics and related topics, I. Int. Math. Ser. (N.Y.), Kluwer/Plenum, New York 1 (2002) 121-144. | Zbl
and ,
[12] Invariant manifolds and the long-time asymptotics of the Navier-Stokes and vorticity equations on
[13] Elliptic partial differential equations of second order. Classics in Mathematics. Springer-Verlag, Berlin (2001). Reprint of the 1998 edition. | MR | Zbl
and ,[14] Exact boundary controllability of 3-D Euler equation. ESAIM: COCV 5 (2000) 1-44 (electronic). | EuDML | Numdam | Zbl
,[15] Existence for an unsteady fluid-structure interaction problem. ESAIM: M2AN 34 (2000) 609-636. | EuDML | Numdam | Zbl
and ,[16] Global existence of weak solutions for viscous incompressible flows around a moving rigid body in three dimensions. J. Math. Fluid Mech. 2 (2000) 219-266. | Zbl
, and ,[17] Ordinary differential equations. Birkhäuser Boston, MA, second edition (1982). | MR | Zbl
,[18] On a motion of a solid body in a viscous fluid. Two-dimensional case. Adv. Math. Sci. Appl. 9 (1999) 633-648. | Zbl
and ,[19] Zur Bewegung einer Kugel in einer zähen Flüssigkeit. Doc. Math. 5 (2000) 15-21 (electronic). | EuDML | Zbl
and ,[20] The solvability of the problem of the motion of a rigid body in a viscous incompressible fluid. Dinamika Splošn. Sredy, (Vyp. 18 Dinamika Zidkost. so Svobod. Granicami) 255 (1974) 249-253.
,[21] On classical solutions of the two-dimensional nonstationary Euler equation. Arch. Rational Mech. Anal. 25 (1967) 188-200. | Zbl
,[22] Exterior problem for the two-dimensional Euler equation. J. Fac. Sci. Univ. Tokyo Sect. IA Math. 30 (1983) 63-92. | Zbl
,[23] Non-homogeneous boundary value problems and applications. Vol. I. Springer-Verlag, New York (1972). Translated from the French by P. Kenneth, Die Grundlehren der mathematischen Wissenschaften, Band 181. | MR | Zbl
and ,[24] Mathematical topics in fluid mechanics. Vol. 1, The Clarendon Press Oxford University Press, New York. Incompressible models, Oxford Science Publications. Oxford Lect. Ser. Math. Appl. 3 (1996). | MR | Zbl
,[25] Well-posedness of a degenerate parabolic equation issuing from two-dimensional perfect fluid dynamics. Appl. Anal. 75 (2000) 441-465. | Zbl
and ,[26] H., V. Starovoitov and M. Tucsnak, Global weak solutions for the two dimensional motion of several rigid bodies in an incompressible viscous fluid. Arch. Rational Mech. Anal. 161 (2002) 113-147. | Zbl
[27] Chute libre d'un solide dans un fluide visqueux incompressible. Existence. Japan J. Appl. Math. 4 (1987) 99-110. | Zbl
,[28] On the self-propelled motion of a rigid body in a viscous liquid and on the attainability of steady symmetric self-propelled motions. J. Math. Fluid Mech. 4 (2002) 285-326. | Zbl
,
[29] Compact sets in the space
[30] Analysis of strong solutions for the equations modeling the motion of a rigid-fluid system in a bounded domain. Adv. Differential Equations 8 (2003) 1499-1532. | Zbl
,[31] Global strong solutions for the two-dimensional motion of an infinite cylinder in a viscous fluid. J. Math. Fluid Mech. 6 (2004) 53-77. | Zbl
and ,[32] Navier-Stokes equations. North-Holland Publishing Co., Amsterdam, third edition (1984). Theory and numerical analysis, with an appendix by F. Thomasset. | MR | Zbl
,[33] Large time behavior for a simplified 1D model of fluid-solid interaction. Comm. Partial Differential Equations 28 (2003) 1705-1738. | Zbl
and ,- Measure-Valued Solutions and Weak–Strong Uniqueness for the Incompressible Inviscid Fluid–Rigid Body Interaction, Journal of Mathematical Fluid Mechanics, Volume 23 (2021) no. 3 | DOI:10.1007/s00021-021-00581-3
- External boundary control of the motion of a rigid body immersed in a perfect two-dimensional fluid, Analysis PDE, Volume 13 (2020) no. 3, p. 651 | DOI:10.2140/apde.2020.13.651
- On the Dynamics of Floating Structures, Annals of PDE, Volume 3 (2017) no. 1 | DOI:10.1007/s40818-017-0029-5
- Control of underwater vehicles in inviscid fluids II. Flows with vorticity, ESAIM: Control, Optimisation and Calculus of Variations, Volume 22 (2016) no. 4, p. 1325 | DOI:10.1051/cocv/2016040
- On the “viscous incompressible fluid + rigid body” system with Navier conditions, Annales de l'Institut Henri Poincaré C, Analyse non linéaire, Volume 31 (2014) no. 1, p. 55 | DOI:10.1016/j.anihpc.2013.01.004
- Control of underwater vehicles in inviscid fluids, ESAIM: Control, Optimisation and Calculus of Variations, Volume 20 (2014) no. 3, p. 662 | DOI:10.1051/cocv/2013079
- Sur la dynamique de corps solides immergés dans un fluide incompressible, Séminaire Laurent Schwartz — EDP et applications (2014), p. 1 | DOI:10.5802/slsedp.39
- On the motion of a rigid body in a two-dimensional ideal flow with vortex sheet initial data, Annales de l'Institut Henri Poincaré C, Analyse non linéaire, Volume 30 (2013) no. 3, p. 401 | DOI:10.1016/j.anihpc.2012.09.001
- Existence of Weak Solutions for a Two-dimensional Fluid-rigid Body System, Journal of Mathematical Fluid Mechanics, Volume 15 (2013) no. 3, p. 553 | DOI:10.1007/s00021-012-0127-9
- ON THE CONTROL OF THE MOTION OF A BOAT, Mathematical Models and Methods in Applied Sciences, Volume 23 (2013) no. 04, p. 617 | DOI:10.1142/s0218202512500571
- A Kato Type Theorem for the Inviscid Limit of the Navier-Stokes Equations with a Moving Rigid Body, Communications in Mathematical Physics, Volume 316 (2012) no. 3, p. 783 | DOI:10.1007/s00220-012-1516-x
- Smooth solutions for motion of a rigid body of general form in an incompressible perfect fluid, Journal of Differential Equations, Volume 252 (2012) no. 7, p. 4259 | DOI:10.1016/j.jde.2011.12.011
- On a free piston problem for potential ideal fluid flow, Mathematical Methods in the Applied Sciences, Volume 35 (2012) no. 14, p. 1721 | DOI:10.1002/mma.2555
- Analyticity of the semigroup associated with the fluid–rigid body problem and local existence of strong solutions, Journal of Functional Analysis, Volume 261 (2011) no. 9, p. 2587 | DOI:10.1016/j.jfa.2011.07.001
- The movement of a solid in an incompressible perfect fluid as a geodesic flow, Proceedings of the American Mathematical Society, Volume 140 (2011) no. 6, p. 2155 | DOI:10.1090/s0002-9939-2011-11219-x
- Existence of solutions for the equations modeling the motion of rigid bodies in an ideal fluid, Journal of Functional Analysis, Volume 259 (2010) no. 11, p. 2856 | DOI:10.1016/j.jfa.2010.07.006
- Smooth solutions for the motion of a ball in an incompressible perfect fluid, Journal of Functional Analysis, Volume 256 (2009) no. 5, p. 1618 | DOI:10.1016/j.jfa.2008.10.024
- On the detection of a moving obstacle in an ideal fluid by a boundary measurement, Inverse Problems, Volume 24 (2008) no. 4, p. 045001 | DOI:10.1088/0266-5611/24/4/045001
- A simple 1D model of inviscid fluid–solid interaction, Journal of Differential Equations, Volume 245 (2008) no. 11, p. 3503 | DOI:10.1016/j.jde.2008.03.011
- Controllability and Observability of Partial Differential Equations: Some Results and Open Problems, Volume 3 (2007), p. 527 | DOI:10.1016/s1874-5717(07)80010-7
- On the motion of a rigid body immersed in a bidimensional incompressible perfect fluid, Annales de l'Institut Henri Poincaré C, Analyse non linéaire, Volume 24 (2007) no. 1, p. 139 | DOI:10.1016/j.anihpc.2005.12.004
- Exact controllability of a fluid–rigid body system, Journal de Mathématiques Pures et Appliquées, Volume 87 (2007) no. 4, p. 408 | DOI:10.1016/j.matpur.2007.01.005
Cité par 22 documents. Sources : Crossref