We analyze residual and hierarchical a posteriori error estimates for nonconforming finite element approximations of elliptic problems with variable coefficients. We consider a finite volume box scheme equivalent to a nonconforming mixed finite element method in a Petrov-Galerkin setting. We prove that all the estimators yield global upper and local lower bounds for the discretization error. Finally, we present results illustrating the efficiency of the estimators, for instance, in the simulation of Darcy flows through heterogeneous porous media.
Mots-clés : finite elements, nonconforming methods, a posteriori error estimates, finite volumes, Darcy equations, heterogeneous media
@article{M2AN_2004__38_6_903_0, author = {El Alaoui, Linda and Ern, Alexandre}, title = {Residual and hierarchical a posteriori error estimates for nonconforming mixed finite element methods}, journal = {ESAIM: Mod\'elisation math\'ematique et analyse num\'erique}, pages = {903--929}, publisher = {EDP-Sciences}, volume = {38}, number = {6}, year = {2004}, doi = {10.1051/m2an:2004044}, mrnumber = {2108938}, zbl = {1077.65113}, language = {en}, url = {http://www.numdam.org/articles/10.1051/m2an:2004044/} }
TY - JOUR AU - El Alaoui, Linda AU - Ern, Alexandre TI - Residual and hierarchical a posteriori error estimates for nonconforming mixed finite element methods JO - ESAIM: Modélisation mathématique et analyse numérique PY - 2004 SP - 903 EP - 929 VL - 38 IS - 6 PB - EDP-Sciences UR - http://www.numdam.org/articles/10.1051/m2an:2004044/ DO - 10.1051/m2an:2004044 LA - en ID - M2AN_2004__38_6_903_0 ER -
%0 Journal Article %A El Alaoui, Linda %A Ern, Alexandre %T Residual and hierarchical a posteriori error estimates for nonconforming mixed finite element methods %J ESAIM: Modélisation mathématique et analyse numérique %D 2004 %P 903-929 %V 38 %N 6 %I EDP-Sciences %U http://www.numdam.org/articles/10.1051/m2an:2004044/ %R 10.1051/m2an:2004044 %G en %F M2AN_2004__38_6_903_0
El Alaoui, Linda; Ern, Alexandre. Residual and hierarchical a posteriori error estimates for nonconforming mixed finite element methods. ESAIM: Modélisation mathématique et analyse numérique, Tome 38 (2004) no. 6, pp. 903-929. doi : 10.1051/m2an:2004044. http://www.numdam.org/articles/10.1051/m2an:2004044/
[1] Hierarchical robust a posteriori error estimator for a singularly pertubed problem. C.R Acad. Paris I 336 (2003) 95-100. | Zbl
, and ,[2] Estimateur d'erreur a posteriori hiérarchique. Application aux éléments finis mixtes. Numer. Math. 80 (1998) 159-179. | Zbl
, , and ,[3] Un schéma de volumes ou éléments finis adaptatif pour les équations de Darcy à perméabilité variable. C.R Acad. Paris I 333 (2001) 693-698. | Zbl
and ,[4] A priori and a posteriori analysis of finite volume discretizations of Darcy's equations. Numer. Math. 96 (2003) 17-42. | Zbl
, and ,[5] A posteriori error estimation in finite element analysis. Wiley-Interscience Publication (2000). | MR | Zbl
and ,[6] A posteriori error estimates for FEM with violated Galerkin orthogonality. Numer. Methods Partial Differential Equations 18 (2002) 241-259. | Zbl
,[7] Mixed and nonconforming finite element methods: implementation, postprocessing and error estimates. RAIRO Modél. Math. Anal. Numér. 19 (1985) 7-32. | Numdam | Zbl
and ,[8] A posteriori estimates based on hierarchical bases. SIAM J. Numer. Anal. 30 (1991) 921-935. | Zbl
and ,[9] Some a posteriori error estimators for elliptic partial differential equations. Math. Comp. 44 (1985) 283-301. | Zbl
and ,[10] Energy norm a posteriori error estimation for discontinuous Galerkin methods. Comput. Methods Appl. Mech. Engrg. 192 (2003) 723-733. | Zbl
, and ,[11]
, private communication.[12] Adaptive finite element methods for elliptic equations with non-smooth coefficients. Numer. Math. 85 (2000) 579-608. | Zbl
and ,[13] Finite elements. Cambridge Univ. Press (1997). | MR | Zbl
,[14] A posteriori error estimate for the mixed finite element method. Math. Comp. 66 (1997) 465-476. | Zbl
,[15] A posteriori error control in low-order finite element discretizations of incompressible stationary flow problems. Math. Comp. 70 (2000) 1353-1381. | Zbl
and ,[16] Finite volume box schemes on triangular meshes. RAIRO Modél. Math. Anal. Numér. 32 (1998) 631-649. | Numdam | Zbl
and ,[17] Finite volume box schemes and mixed methods. ESAIM: M2AN 31 (2000) 1087-1106. | Numdam | Zbl
,[18] Some nonconforming mixed box schemes for elliptic problems. Numer. Methods Partial Differential Equations 8 (2002) 355-373. | Zbl
and ,[19] Conforming and nonconforming mixed finite element methods for solving the stationary Stokes equations I. RAIRO Anal. Numér. 3 (1973) 33-75. | Numdam | Zbl
and ,[20] Error estimators for nonconforming finite element approximations of the Stokes problem. Math. Comp. 64 (1995) 1017-1033. | Zbl
, and ,[21] A posteriori error estimators for nonconforming finite element methods. RAIRO Modél Math. Anal. Numér. 30 (1996) 385-400. | Numdam | Zbl
, , and ,[22] Theory and practice of finite elements, Appl. Math. Ser., Springer, New York 159 (2004). | MR | Zbl
and ,[23] A non-conforming piecewise quadratic finite element on triangles. Int. J. Num. Meth. Engrg. 19 (1983) 505-520. | Zbl
and ,[24] Element-oriented and edge-oriented local error estimators for non-conforming finite element methods. RAIRO Modél. Math. Anal. Numér. 30 (1996) 237-263. | Numdam | Zbl
and ,[25] A posteriori -error estimates for the nonconforming /-finite element discretization of the Stokes equations. J. Comput. Appl. Math. 96 (1998) 99-116. | Zbl
,[26] A posteriori error estimates for non-conforming finite element schemes. Calcolo 36 (1999) 129-141. | Zbl
and ,[27] A posteriori error estimates for a discontinuous Galerkin approximation of second order elliptic problems. SIAM J. Numer. Anal. 41 (2003) 2374-2399. | Zbl
and ,[28] A mixed finite element method for second order elliptic problems, in Mathematical Aspects of the Finite Element Method, E. Magenes and I. Galligani Eds., Springer-Verlag, New York, Lect. Notes Math. 606 (1977). | MR | Zbl
and ,[29] A posteriori error estimates with post-processing for nonconforming finite elements. ESAIM: M2AN 36 (2002) 489-503. | Numdam | Zbl
,[30] Mixed finite volume methods. Int. J. Num. Meth. Engrg. 46 (1999) 1351-1366. | Zbl
and ,[31] A posteriori error estimators for the Stokes equations. II. Non-conforming discretizations. Numer. Math. 60 (1991) 235-249. | Zbl
,[32] A review of a posteriori error estimation and adaptative mesh-refinement techniques. Chichester, England (1996). | Zbl
,[33] A comparison of a posteriori error estimators for mixed finite element discretizations by Raviart-Thomas. Math. Comp. 68 (1999) 1347-1378. | Zbl
and ,Cité par Sources :