The Method of Fundamental Solutions (MFS) is a boundary-type meshless method for the solution of certain elliptic boundary value problems. In this work, we investigate the properties of the matrices that arise when the MFS is applied to the Dirichlet problem for Laplace's equation in a disk. In particular, we study the behaviour of the eigenvalues of these matrices and the cases in which they vanish. Based on this, we propose a modified efficient numerical algorithm for the solution of the problem which is applicable even in the cases when the MFS matrix might be singular. We prove the convergence of the method for analytic boundary data and perform a stability analysis of the method with respect to the distance of the singularities from the origin and the number of degrees of freedom. Finally, we test the algorithm numerically.
Mots clés : method of fundamental solutions, boundary meshless methods, error bounds and convergence of the MFS
@article{M2AN_2004__38_3_495_0, author = {Smyrlis, Yiorgos-Sokratis and Karageorghis, Andreas}, title = {Numerical analysis of the {MFS} for certain harmonic problems}, journal = {ESAIM: Mod\'elisation math\'ematique et analyse num\'erique}, pages = {495--517}, publisher = {EDP-Sciences}, volume = {38}, number = {3}, year = {2004}, doi = {10.1051/m2an:2004023}, mrnumber = {2075757}, zbl = {1079.65108}, language = {en}, url = {http://www.numdam.org/articles/10.1051/m2an:2004023/} }
TY - JOUR AU - Smyrlis, Yiorgos-Sokratis AU - Karageorghis, Andreas TI - Numerical analysis of the MFS for certain harmonic problems JO - ESAIM: Modélisation mathématique et analyse numérique PY - 2004 SP - 495 EP - 517 VL - 38 IS - 3 PB - EDP-Sciences UR - http://www.numdam.org/articles/10.1051/m2an:2004023/ DO - 10.1051/m2an:2004023 LA - en ID - M2AN_2004__38_3_495_0 ER -
%0 Journal Article %A Smyrlis, Yiorgos-Sokratis %A Karageorghis, Andreas %T Numerical analysis of the MFS for certain harmonic problems %J ESAIM: Modélisation mathématique et analyse numérique %D 2004 %P 495-517 %V 38 %N 3 %I EDP-Sciences %U http://www.numdam.org/articles/10.1051/m2an:2004023/ %R 10.1051/m2an:2004023 %G en %F M2AN_2004__38_3_495_0
Smyrlis, Yiorgos-Sokratis; Karageorghis, Andreas. Numerical analysis of the MFS for certain harmonic problems. ESAIM: Modélisation mathématique et analyse numérique, Tome 38 (2004) no. 3, pp. 495-517. doi : 10.1051/m2an:2004023. http://www.numdam.org/articles/10.1051/m2an:2004023/
[1] Circulant Matrices, John Wiley & Sons, New York (1979). | MR | Zbl
,[2] Acoustic and Electromagnetic Scattering Analysis Using Discrete Sources. Academic Press, New York (2000).
, and ,[3] The method of fundamental solutions for elliptic boundary value problems. Adv. Comput. Math. 9 (1998) 69-95. | Zbl
and ,[4] The method of fundamental solutions for scattering and radiation problems. Eng. Anal. Bound. Elem. 27 (2003) 759-769. | Zbl
, and ,[5] Discrete Projection Methods for Integral Equations. Computational Mechanics Publications, Southampton (1996). | MR | Zbl
and ,[6] The method of fundamental solutions for potential, Helmholtz and diffusion problems, in Boundary Integral Methods and Mathematical Aspects, M.A. Golberg Ed., WIT Press/Computational Mechanics Publications, Boston (1999) 103-176. | Zbl
and ,[7] Table of Integrals, Series, and Products, Academic Press, London (1980). | Zbl
and ,[8] A mathematical study of the charge simulation method II. J. Fac. Sci., Univ. of Tokyo, Sect. 1A, Math. 36 (1989) 135-162. | Zbl
,[9] A mathematical study of the charge simulation method I. J. Fac. Sci., Univ. of Tokyo, Sect. 1A, Math. 35 (1988) 507-518. | Zbl
and ,[10] Applications of the Boundary Collocation Method in Applied Mechanics, Wydawnictwo Politechniki Poznanskiej, Poznan (2001) (In Polish).
,[11] The approximate solution of elliptic boundary-value problems by fundamental solutions. SIAM J. Numer. Anal. 14 (1977) 638-650. | Zbl
and ,[12] Some aspects of the method of fundamental solutions for certain harmonic problems. J. Sci. Comput. 16 (2001) 341-371. | Zbl
and ,[13] Numerical analysis of the MFS for certain harmonic problems. Technical Report TR/04/2003, Dept. of Math. & Stat., University of Cyprus.
and ,Cité par Sources :