A high-order compact finite difference scheme for a fully nonlinear parabolic differential equation is analyzed. The equation arises in the modeling of option prices in financial markets with transaction costs. It is shown that the finite difference solution converges locally uniformly to the unique viscosity solution of the continuous equation. The proof is based on a careful study of the discretization matrices and on an abstract convergence result due to Barles and Souganides.
Mots-clés : high-order compact finite differences, numerical convergence, viscosity solution, financial derivatives
@article{M2AN_2004__38_2_359_0, author = {D\"uring, Bertram and Fourni\'e, Michel and J\"ungel, Ansgar}, title = {Convergence of a high-order compact finite difference scheme for a nonlinear {Black-Scholes} equation}, journal = {ESAIM: Mod\'elisation math\'ematique et analyse num\'erique}, pages = {359--369}, publisher = {EDP-Sciences}, volume = {38}, number = {2}, year = {2004}, doi = {10.1051/m2an:2004018}, zbl = {1124.91031}, mrnumber = {2069151}, language = {en}, url = {http://www.numdam.org/articles/10.1051/m2an:2004018/} }
TY - JOUR AU - Düring, Bertram AU - Fournié, Michel AU - Jüngel, Ansgar TI - Convergence of a high-order compact finite difference scheme for a nonlinear Black-Scholes equation JO - ESAIM: Modélisation mathématique et analyse numérique PY - 2004 SP - 359 EP - 369 VL - 38 IS - 2 PB - EDP-Sciences UR - http://www.numdam.org/articles/10.1051/m2an:2004018/ DO - 10.1051/m2an:2004018 LA - en ID - M2AN_2004__38_2_359_0 ER -
%0 Journal Article %A Düring, Bertram %A Fournié, Michel %A Jüngel, Ansgar %T Convergence of a high-order compact finite difference scheme for a nonlinear Black-Scholes equation %J ESAIM: Modélisation mathématique et analyse numérique %D 2004 %P 359-369 %V 38 %N 2 %I EDP-Sciences %U http://www.numdam.org/articles/10.1051/m2an:2004018/ %R 10.1051/m2an:2004018 %G en %F M2AN_2004__38_2_359_0
Düring, Bertram; Fournié, Michel; Jüngel, Ansgar. Convergence of a high-order compact finite difference scheme for a nonlinear Black-Scholes equation. ESAIM: Modélisation mathématique et analyse numérique, Tome 38 (2004) no. 2, pp. 359-369. doi : 10.1051/m2an:2004018. http://www.numdam.org/articles/10.1051/m2an:2004018/
[1] Discontinuous solutions of deterministic optimal stopping time problems. RAIRO Modél. Math. Anal. Numér. 21 (1987) 557-579. | EuDML | Numdam | MR | Zbl
and ,[2] Exit time problems in optimal control and vanishing viscosity method. SIAM J. Control Optim. 26 (1988) 1133-1148. | MR | Zbl
and ,[3] Option pricing with transaction costs and a nonlinear Black-Scholes equation. Finance Stoch. 2 (1998) 369-397. | MR | Zbl
and ,[4] Convergence of approximation schemes for fully nonlinear second order equations. Asympt. Anal. 4 (1991) 271-283. | MR | Zbl
and ,[5] Convergence of numerical schemes for parabolic equations arising in finance theory. Math. Models Meth. Appl. Sci. 5 (1995) 125-143. | MR | Zbl
, and ,[6] The pricing of options and corporate liabilities. J. Polit. Econ. 81 (1973) 637-659. | MR | Zbl
and ,[7] Compact difference methods applied to initial-boundary value problems for mixed systems. Numer. Math. 73 (1996) 291-309. | MR | Zbl
and ,[8] Option replication in discrete time with transaction costs. J. Finance 47 (1973) 271-293.
and ,[9] Bounds on process of contingent claims in an intertemporal economy with proportional transaction costs and general preferences. Finance Stoch. 3 (1999) 345-369. | MR | Zbl
and ,[10] Viscosity solutions of Hamilton-Jacobi equations. Trans. Amer. Math. Soc. 277 (1983) 1-42. | Zbl
and ,[11] User's guide to viscosity solutions of second order partial differential equations. Bull. Amer. Math. Soc. 27 (1992) 1-67. | Zbl
, and ,[12] European option pricing with transaction fees. SIAM J. Control Optim. 31 (1993) 470-493. | Zbl
, and ,[13] High order compact finite difference schemes for a nonlinear Black-Scholes equation. Int. J. Appl. Theor. Finance 6 (2003) 767-789. | Zbl
, and ,[14] Perfect option hedging for a large trader. Finance Stoch. 2 (1998) 115-141. | Zbl
,[15] Market illiquidity as a source of model risk in dynamic hedging, in Model Risk, R. Gibson Ed., RISK Publications, London (2000).
,[16] Market liquidity, hedging and crashes. Amer. Econ. Rev. 80 (1990) 999-1021.
and ,[17] Optimal replication of contingent claims under transaction costs. Rev. Future Markets 8 (1989) 222-239.
and ,[18] On high-order compact difference schemes. Russ. J. Numer. Anal. Math. Model. 15 (2000) 29-46. | Zbl
,[19] A boundary value problem of the Dirichlet type for Hamilton-Jacobi equations. Ann. Scuola Norm. Sup. Pisa 16 (1989) 105-135. | Numdam | Zbl
,[20] Market manipulation, bubbles, corners and short squeezes. J. Financial Quant. Anal. 27 (1992) 311-336.
,[21] Far field boundary conditions for Black-Scholes equations. SIAM J. Numer. Anal. 38 (2000) 1357-1368. | Zbl
and ,[22] Introduction au calcul stochastique appliqué à la finance1997). | MR
and ,[23] Continuous time CAPM, price for risk and utility maximization, in Mathematical Finance. Workshop of the Mathematical Finance Research Project, Konstanz, Germany, M. Kohlmann et al. Eds., Birkhäuser, Basel (2001). | MR | Zbl
,[24] Theory of rational option pricing. Bell J. Econ. Manag. Sci. 4 (1973) 141-183.
,[25] Convergence theorem for difference approximations of hyperbolic quasi-linear initial-boundary value problems. Math. Comput. 49 (1987) 445-459. | Zbl
,[26] On feedback effects from hedging derivatives. Math. Finance 8 (1998) 67-84. | Zbl
and ,[27] High order difference schemes for unsteady one-dimensional diffusion-convection problems. J. Comp. Phys. 114 (1994) 59-76. | Zbl
,[28] The feedback effect of hedging in illiquid markets. SIAM J. Appl. Math. 61 (2000) 232-272. | Zbl
and ,[29] There is no nontrivial hedging portfolio for option pricing with transaction costs. Ann. Appl. Probab. 5 (1995) 327-355. | Zbl
, and ,[30] Accurate partial difference methods. II: Non-linear problems. Numer. Math. 6 (1964) 37-46. | Zbl
,[31] Fourth order convergence of compact finite difference solver for 2D incompressible flow. Commun. Appl. Anal. 7 (2003) 171-191. | Zbl
and ,[32] An asymptotic analysis of an optimal hedging model for option pricing with transaction costs. Math. Finance 7 (1997) 307-324. | Zbl
and ,Cité par Sources :