We perform a complete study of the truncation error of the Jacobi-Anger series. This series expands every plane wave in terms of spherical harmonics . We consider the truncated series where the summation is performed over the ’s satisfying . We prove that if is large enough, the truncated series gives rise to an error lower than as soon as satisfies where is the Lambert function and are pure positive constants. Numerical experiments show that this asymptotic is optimal. Those results are useful to provide sharp estimates for the error in the fast multipole method for scattering computation.
Mots-clés : Jacobi-Anger, fast multipole method, truncation error
@article{M2AN_2004__38_2_371_0, author = {Carayol, Quentin and Collino, Francis}, title = {Error estimates in the fast multipole method for scattering problems. {Part} 1 : truncation of the {Jacobi-Anger} series}, journal = {ESAIM: Mod\'elisation math\'ematique et analyse num\'erique}, pages = {371--394}, publisher = {EDP-Sciences}, volume = {38}, number = {2}, year = {2004}, doi = {10.1051/m2an:2004017}, mrnumber = {2069152}, zbl = {1077.41027}, language = {en}, url = {http://www.numdam.org/articles/10.1051/m2an:2004017/} }
TY - JOUR AU - Carayol, Quentin AU - Collino, Francis TI - Error estimates in the fast multipole method for scattering problems. Part 1 : truncation of the Jacobi-Anger series JO - ESAIM: Modélisation mathématique et analyse numérique PY - 2004 SP - 371 EP - 394 VL - 38 IS - 2 PB - EDP-Sciences UR - http://www.numdam.org/articles/10.1051/m2an:2004017/ DO - 10.1051/m2an:2004017 LA - en ID - M2AN_2004__38_2_371_0 ER -
%0 Journal Article %A Carayol, Quentin %A Collino, Francis %T Error estimates in the fast multipole method for scattering problems. Part 1 : truncation of the Jacobi-Anger series %J ESAIM: Modélisation mathématique et analyse numérique %D 2004 %P 371-394 %V 38 %N 2 %I EDP-Sciences %U http://www.numdam.org/articles/10.1051/m2an:2004017/ %R 10.1051/m2an:2004017 %G en %F M2AN_2004__38_2_371_0
Carayol, Quentin; Collino, Francis. Error estimates in the fast multipole method for scattering problems. Part 1 : truncation of the Jacobi-Anger series. ESAIM: Modélisation mathématique et analyse numérique, Tome 38 (2004) no. 2, pp. 371-394. doi : 10.1051/m2an:2004017. http://www.numdam.org/articles/10.1051/m2an:2004017/
[1] Handbook of Mathematical Functions. Dover, New York (1964).
and ,[2] Analysis of the truncation errors in the fast multipole method for scattering problems. J. Comput. Appl. Math. 115 (2000) 23-33. | Zbl
and ,[3] Développement et analyse d'une méthode multipôle multiniveau pour l'électromagnétisme. Ph.D. Thesis, Université Paris VI Pierre et Marie Curie, Paris (2002).
,[4] Application of an ultra weak variational formulation of elliptic pdes to the 2D Helmholtz problem. SIAM J. Numer. Anal. 35 (1998) 255-299. | Zbl
and ,[5] Fast and Efficient Algorithms in Computational Electromagnetics. Artech House (2001).
, , and ,[6] The fast multipole method for the wave equation: A pedestrian prescription. IEEE Antennas and Propagation Magazine 35 (1993) 7-12.
, and ,[7] Inverse Acoustic and Electromagnetic Scattering Theory. Springer-Verlag 93 (1992). | MR | Zbl
and ,[8] On the Lambert function. Adv. Comput. Math. 5 (1996) 329-359. | Zbl
, , , and ,[9] The fast multipole method. I. Error analysis and asymptotic complexity. SIAM J. Numer. Anal. 38 (2000) 98-128 (electronic). | Zbl
,[10] The fast multipole method: Numerical implementation. J. Comput. Phys. 160 (2000) 196-240. | Zbl
,[11] Efficient fast multipole method for low frequency scattering. J. Comput. Phys. (to appear). | MR | Zbl
and ,[12] Multipole translation theory for the three-dimensional Laplace and Helmholtz equations. SIAM J. Sci. Comput. 16 (1995) 865-897. | Zbl
and ,[13] Table of integrals, series, and products, 5th edn., Academic Press (1994). | MR | Zbl
and ,[14] Error analysis for the numerical evaluation of the diagonal forms of the scalar spherical addition theorem. SIAM J. Numer. Anal. 36 (1999) 906-921 (electronic). | Zbl
, and ,[15] Alternative proof of a sharpened form of Bernstein's inequality for Legendre polynomials. Applicable Anal. 14 (1982/83) 237-240. | Zbl
,[16] Corrigendum: “Alternative proof of a sharpened form of Bernstein's inequality for Legendre polynomials” [Appl. Anal. 14 (1982/83) 237-240; MR 84k:26017]. Appl. Anal. 50 (1993) 47. | Zbl
,[17] Acoustic and Electromagnetic Equation. Integral Representation for Harmonic Problems. Springer-Verlag 144 (2001). | MR | Zbl
,[18] Numerical accuracy of multipole expansion for 2-d mlfma. IEEE Trans. Antennas Propagat. 51 (2003) 1883-1890.
and ,[19] Diagonal forms of the translation operators in the fast multipole algorithm for scattering problems. BIT 36 (1996) 333-358. | Zbl
,[20] Bessel functions and Kapteyn series. Proc. London Math. Soc. (1916) 150-174. | JFM
,[21] A treatise on the theory of Bessel functions. Cambridge University Press (1966). | JFM | MR | Zbl
,Cité par Sources :