First-order accurate monotone conservative schemes have good convergence and stability properties, and thus play a very important role in designing modern high resolution shock-capturing schemes. Do the monotone difference approximations always give a good numerical solution in sense of monotonicity preservation or suppression of oscillations? This note will investigate this problem from a numerical point of view and show that a -point monotone scheme may give an oscillatory solution even though the approximate solution is total variation diminishing, and satisfies maximum principle as well as discrete entropy inequality.
Mots clés : hyperbolic conservation laws, finite difference scheme, monotone scheme, convergence, oscillation
@article{M2AN_2004__38_2_345_0, author = {Tang, Huazhong and Warnecke, Gerald}, title = {A note on $\sf (2K+1)$-point conservative monotone schemes}, journal = {ESAIM: Mod\'elisation math\'ematique et analyse num\'erique}, pages = {345--357}, publisher = {EDP-Sciences}, volume = {38}, number = {2}, year = {2004}, doi = {10.1051/m2an:2004016}, mrnumber = {2069150}, zbl = {1075.65113}, language = {en}, url = {http://www.numdam.org/articles/10.1051/m2an:2004016/} }
TY - JOUR AU - Tang, Huazhong AU - Warnecke, Gerald TI - A note on $\sf (2K+1)$-point conservative monotone schemes JO - ESAIM: Modélisation mathématique et analyse numérique PY - 2004 SP - 345 EP - 357 VL - 38 IS - 2 PB - EDP-Sciences UR - http://www.numdam.org/articles/10.1051/m2an:2004016/ DO - 10.1051/m2an:2004016 LA - en ID - M2AN_2004__38_2_345_0 ER -
%0 Journal Article %A Tang, Huazhong %A Warnecke, Gerald %T A note on $\sf (2K+1)$-point conservative monotone schemes %J ESAIM: Modélisation mathématique et analyse numérique %D 2004 %P 345-357 %V 38 %N 2 %I EDP-Sciences %U http://www.numdam.org/articles/10.1051/m2an:2004016/ %R 10.1051/m2an:2004016 %G en %F M2AN_2004__38_2_345_0
Tang, Huazhong; Warnecke, Gerald. A note on $\sf (2K+1)$-point conservative monotone schemes. ESAIM: Modélisation mathématique et analyse numérique, Tome 38 (2004) no. 2, pp. 345-357. doi : 10.1051/m2an:2004016. http://www.numdam.org/articles/10.1051/m2an:2004016/
[1] Monotone difference approximations for scalar conservation laws. Math. Comput. 34 (1980) 1-21. | Zbl
and ,[2] High resolution schemes for hyperbolic conservation laws. J. Comput. Phys. 49 (1983) 357-393. | Zbl
,[3] Uniformly high order accurate non-oscillatory schemes I. SIAM J. Numer. Anal. 24 (1987) 229-309. | Zbl
and ,[4] On finite difference approximations and entropy conditions for shocks. Comm. Pure Appl. Math. 29 (1976) 297-322. | Zbl
, and ,[5] Unconditionally stable explicit schemes for the approximation of conservation laws, in Ergodic Theory, Analysis, and Efficient Simulation of Dynamical Systems, B. Fiedler Ed., Springer (2001). Also available at http://www.math.fu-berlin.de/danse/bookpapers/ | MR | Zbl
and ,[6] Accuracy of some approximate methods for computing the weaks solutions of a first-order quasi-linear equation. USSR. Comput. Math. Phys. 16 (1976) 105-119. | Zbl
,[7] Third order nonoscillatory central scheme for hyperbolic conservation laws. Numer. Math. 79 (1998) 397-425. | Zbl
and ,[8] The optimal convergence rate of monotone finite difference methods for hyperbolic conservation laws. SIAM J. Numer. Anal. 34 (1997) 2306-2318 | Zbl
,[9] On the convergence of monotone finite difference schemes with variable spatial differencing. Math. Comput. 40 (1983) 91-106. | Zbl
,[10] The large-time behavior of the scalar, genuinely nonlinear Lax-Friedrichs schemes. Math. Comput. 43 (1984) 353-368. | MR | Zbl
,[11] The sharpness of Kuznetsov’s -error estimate for monotone difference schemes. Math. Comput. 64 (1995) 581-589. | MR | Zbl
and ,[12] Viscosity methods for piecewise smooth solutions to scalar conservation laws. Math. Comput. 66 (1997) 495-526. | MR | Zbl
and ,Cité par Sources :