The effect of reduced integration in the Steklov eigenvalue problem
ESAIM: Modélisation mathématique et analyse numérique, Tome 38 (2004) no. 1, pp. 27-36.

In this paper we analyze the effect of introducing a numerical integration in the piecewise linear finite element approximation of the Steklov eigenvalue problem. We obtain optimal order error estimates for the eigenfunctions when this numerical integration is used and we prove that, for singular eigenfunctions, the eigenvalues obtained using this reduced integration are better approximations than those obtained using exact integration when the mesh size is small enough.

DOI : 10.1051/m2an:2004002
Classification : 65D30, 65N25, 65N30
Mots-clés : finite elements, Steklov eigenvalue problem, reduced integration
@article{M2AN_2004__38_1_27_0,
     author = {Armentano, Maria G.},
     title = {The effect of reduced integration in the {Steklov} eigenvalue problem},
     journal = {ESAIM: Mod\'elisation math\'ematique et analyse num\'erique},
     pages = {27--36},
     publisher = {EDP-Sciences},
     volume = {38},
     number = {1},
     year = {2004},
     doi = {10.1051/m2an:2004002},
     mrnumber = {2073929},
     zbl = {1077.65115},
     language = {en},
     url = {http://www.numdam.org/articles/10.1051/m2an:2004002/}
}
TY  - JOUR
AU  - Armentano, Maria G.
TI  - The effect of reduced integration in the Steklov eigenvalue problem
JO  - ESAIM: Modélisation mathématique et analyse numérique
PY  - 2004
SP  - 27
EP  - 36
VL  - 38
IS  - 1
PB  - EDP-Sciences
UR  - http://www.numdam.org/articles/10.1051/m2an:2004002/
DO  - 10.1051/m2an:2004002
LA  - en
ID  - M2AN_2004__38_1_27_0
ER  - 
%0 Journal Article
%A Armentano, Maria G.
%T The effect of reduced integration in the Steklov eigenvalue problem
%J ESAIM: Modélisation mathématique et analyse numérique
%D 2004
%P 27-36
%V 38
%N 1
%I EDP-Sciences
%U http://www.numdam.org/articles/10.1051/m2an:2004002/
%R 10.1051/m2an:2004002
%G en
%F M2AN_2004__38_1_27_0
Armentano, Maria G. The effect of reduced integration in the Steklov eigenvalue problem. ESAIM: Modélisation mathématique et analyse numérique, Tome 38 (2004) no. 1, pp. 27-36. doi : 10.1051/m2an:2004002. http://www.numdam.org/articles/10.1051/m2an:2004002/

[1] M.G. Armentano and R.G. Durán, Mass lumping or not mass lumping for eigenvalue problems. Numer. Methods Partial Differential Equations 19 (2003) 653-664. | Zbl

[2] I. Babuska and J. Osborn, Eigenvalue Problems, Handbook of Numerical Analysis, Vol. II. Finite Element Methods (Part. 1) (1991). | MR | Zbl

[3] U. Banerjee and J. Osborn, Estimation of the effect of numerical integration in finite element eigenvalue approximation. Numer. Math. 56 (1990) 735-762. | Zbl

[4] F.B. Belgacem and S.C. Brenner, Some nonstandard finite element estimates with applications to 3D Poisson and Signorini problems. Electron. Trans. Numer. Anal. 12 (2001) 134-148. | Zbl

[5] A. Bermudez, R. Rodriguez and D. Santamarina, A finite element solution of an added mass formulation for coupled fluid-solid vibrations. Numer. Math. 87 (2000) 201-227. | Zbl

[6] S.C. Brenner and L.R. Scott, The Mathematical Theory of Finite Element Methods. Springer-Verlag, New York (1994). | MR | Zbl

[7] P. Ciarlet, The Finite Element Method for Elliptic Problems. North-Holland, Amsterdam (1978). | MR | Zbl

[8] P. Grisvard, Elliptic Problems in Nonsmooth Domain. Pitman Boston (1985). | MR | Zbl

[9] H.J.-P. Morand and R. Ohayon, Interactions Fluids-Structures. Rech. Math. Appl. 23 (1985).

[10] H.F. Weinberger, Variational Methods for Eigenvalue Approximation. SIAM, Philadelphia (1974). | MR | Zbl

Cité par Sources :