Global stability of steady solutions for a model in virus dynamics
ESAIM: Modélisation mathématique et analyse numérique, Tome 37 (2003) no. 4, pp. 709-723.

We consider a simple model for the immune system in which virus are able to undergo mutations and are in competition with leukocytes. These mutations are related to several other concepts which have been proposed in the literature like those of shape or of virulence - a continuous notion. For a given species, the system admits a globally attractive critical point. We prove that mutations do not affect this picture for small perturbations and under strong structural assumptions. Based on numerical and theoretical arguments, we also examine how, releasing these assumptions, the system can blow-up.

DOI : 10.1051/m2an:2003045
Classification : 34A34, 34G20, 70K20, 92D25, 92D10, 37A60
Mots clés : virus dynamics, population dynamics, genetics, nonlinear integro-differential equations, nonlinear ordinary differential equations, dynamical systems in statistical mechanics, immunology, evolution theory
@article{M2AN_2003__37_4_709_0,
     author = {Frid, Hermano and Jabin, Pierre-Emmanuel and Perthame, Beno{\^\i}t},
     title = {Global stability of steady solutions for a model in virus dynamics},
     journal = {ESAIM: Mod\'elisation math\'ematique et analyse num\'erique},
     pages = {709--723},
     publisher = {EDP-Sciences},
     volume = {37},
     number = {4},
     year = {2003},
     doi = {10.1051/m2an:2003045},
     mrnumber = {2018439},
     zbl = {1065.92013},
     language = {en},
     url = {http://www.numdam.org/articles/10.1051/m2an:2003045/}
}
TY  - JOUR
AU  - Frid, Hermano
AU  - Jabin, Pierre-Emmanuel
AU  - Perthame, Benoît
TI  - Global stability of steady solutions for a model in virus dynamics
JO  - ESAIM: Modélisation mathématique et analyse numérique
PY  - 2003
SP  - 709
EP  - 723
VL  - 37
IS  - 4
PB  - EDP-Sciences
UR  - http://www.numdam.org/articles/10.1051/m2an:2003045/
DO  - 10.1051/m2an:2003045
LA  - en
ID  - M2AN_2003__37_4_709_0
ER  - 
%0 Journal Article
%A Frid, Hermano
%A Jabin, Pierre-Emmanuel
%A Perthame, Benoît
%T Global stability of steady solutions for a model in virus dynamics
%J ESAIM: Modélisation mathématique et analyse numérique
%D 2003
%P 709-723
%V 37
%N 4
%I EDP-Sciences
%U http://www.numdam.org/articles/10.1051/m2an:2003045/
%R 10.1051/m2an:2003045
%G en
%F M2AN_2003__37_4_709_0
Frid, Hermano; Jabin, Pierre-Emmanuel; Perthame, Benoît. Global stability of steady solutions for a model in virus dynamics. ESAIM: Modélisation mathématique et analyse numérique, Tome 37 (2003) no. 4, pp. 709-723. doi : 10.1051/m2an:2003045. http://www.numdam.org/articles/10.1051/m2an:2003045/

[1] N. Bellomo and L. Preziosi, Modeling and mathematical problems related to tumors immune system interactions. Math. Comput. Model. 31 (2000) 413-452. | Zbl

[2] R. Bürger,The mathematical theory of selection, recombination and mutation. Wiley (2000). | MR | Zbl

[3] M.A.J. Chaplain Ed., Special Issue on Mathematical Models for the Growth, Development and Treatment of Tumours. Math. Mod. Meth. Appl. S. 9 (1999). | Zbl

[4] E. De Angelis and P.-E. Jabin, Analysis of a mean field modelling of tumor and immune system competition. Math. Mod. Meth. Appl. S. 13 (2003) 187-206. | Zbl

[5] P. Degond and B. Lucquin-Desreux, The Fokker-Plansk asymptotics of the Boltzmann collision operator in the Coulomb case? Math. Mod. Meth. Appl. S. 2 (1992) 167-182. | Zbl

[6] O. Dieckmann and J.P. Heesterbeek, Mathematical Epidemiology of infectious Diseases. Wiley, New York (2000). | MR | Zbl

[7] O. Diekmann, P.-E. Jabin, S. Mischler and B. Perthame, Adaptive dynamics without time scale separation. Work in preparation.

[8] A. Lins, W. De Melo and C.C. Pugh, On Liénard's equation. Lecture Notes in Math. 597 (1977) 334-357. | Zbl

[9] R.M. May and M.A. Nowak, Virus dynamics (mathematical principles of immunology and virology). Oxford Univ. Press (2000). | MR | Zbl

[10] A.S. Perelson and G. Weisbuch, Immunology for physicists. Rev. modern phys. 69 (1997) 1219-1267.

[11] J. Saldaña, S.F. Elana and R.V. Solé, Coinfection and superinfection in RNA virus populations: a selection-mutation model. Math. Biosci. 183 (2003) 135-160. | Zbl

[12] C.H. Taubes, Modeling lectures on differential equations in biology. Prentice-Hall (2001).

[13] C. Villani, A review of mathematical topics in collisional kinetic theory, in Handbook of fluid mechanics, S. Friedlander and D. Serre Eds., Vol. 1. North-Holland, Amsterdam (2000) 71-305.

[14] D. Waxman, A model of population genetics and its mathematical relation to quantum theory. Contemp. phys. 43 (2002) 13-20.

Cité par Sources :