Persistence and bifurcation analysis on a predator-prey system of holling type
ESAIM: Modélisation mathématique et analyse numérique, Tome 37 (2003) no. 2, pp. 339-344.

We present a Gause type predator-prey model incorporating delay due to response of prey population growth to density and gestation. The functional response of predator is assumed to be of Holling type II. In absence of prey, predator has a density dependent death rate. Sufficient criterion for uniform persistence is derived. Conditions are found out for which system undergoes a Hopf-bifurcation.

DOI : 10.1051/m2an:2003029
Classification : 34D23, 34D45, 92D25
Mots clés : persistance, bifurcation, stability, holling type II
@article{M2AN_2003__37_2_339_0,
     author = {Mukherjee, Debasis},
     title = {Persistence and bifurcation analysis on a predator-prey system of holling type},
     journal = {ESAIM: Mod\'elisation math\'ematique et analyse num\'erique},
     pages = {339--344},
     publisher = {EDP-Sciences},
     volume = {37},
     number = {2},
     year = {2003},
     doi = {10.1051/m2an:2003029},
     zbl = {1029.34040},
     language = {en},
     url = {http://www.numdam.org/articles/10.1051/m2an:2003029/}
}
TY  - JOUR
AU  - Mukherjee, Debasis
TI  - Persistence and bifurcation analysis on a predator-prey system of holling type
JO  - ESAIM: Modélisation mathématique et analyse numérique
PY  - 2003
SP  - 339
EP  - 344
VL  - 37
IS  - 2
PB  - EDP-Sciences
UR  - http://www.numdam.org/articles/10.1051/m2an:2003029/
DO  - 10.1051/m2an:2003029
LA  - en
ID  - M2AN_2003__37_2_339_0
ER  - 
%0 Journal Article
%A Mukherjee, Debasis
%T Persistence and bifurcation analysis on a predator-prey system of holling type
%J ESAIM: Modélisation mathématique et analyse numérique
%D 2003
%P 339-344
%V 37
%N 2
%I EDP-Sciences
%U http://www.numdam.org/articles/10.1051/m2an:2003029/
%R 10.1051/m2an:2003029
%G en
%F M2AN_2003__37_2_339_0
Mukherjee, Debasis. Persistence and bifurcation analysis on a predator-prey system of holling type. ESAIM: Modélisation mathématique et analyse numérique, Tome 37 (2003) no. 2, pp. 339-344. doi : 10.1051/m2an:2003029. http://www.numdam.org/articles/10.1051/m2an:2003029/

[1] V.D. Adams, D.L. Deangelis and R.A. Goldstein, Stability analysis of the time delay in a Host-Parasitoid Model. J. Theoret. Biol. 83 (1980) 43-62.

[2] E. Beretta and Y. Kuang, Convergence results in a well known delayed predator-prey system. J. Math. Anal. Appl. 204 (1996) 840-853. | Zbl

[3] A.A. Berryman, The origins and evolution of predator-prey theory. Ecology 73 (1992) 1530-1535.

[4] Y. Cao and H.I. Freedman, Global attractivity in time delayed predator-prey system. J. Austral. Math. Soc. Ser. B. 38 (1996) 149-270. | Zbl

[5] B.W. Dale, L.G. Adams and R.T. Bowyer, Functional response of wolves preying on barren ground caribou in a multiple prey ecosystem. J. Anim. Ecology 63 (1994) 644-652.

[6] M. Farkas and H.I. Freedman, The stable coexistence of competing species on a renewable resource. 138 (1989) 461-472. | Zbl

[7] H.I. Freedman and V.S.H. Rao, The trade-off between mutual interface and time lags in predator-prey systems. Bull. Math. Biol. 45 (1983) 991-1004. | Zbl

[8] J.K. Hale and P. Waltman, Persistence in infinite dimensional systems. SIAM J. Math. Anal. 20 (1989) 388-395. | Zbl

[9] Y. Kuang, Non uniqueness of limit cycles of Gause type predator-prey systems. Appl. Anal. 29 (1988) 269-287. | Zbl

[10] Y. Kuang, On the location and period of limit cycles in Gause type predator-prey systems. J. Math. Anal. Appl. 142 (1989) 130-143. | Zbl

[11] Y. Kuang, Limit cycles in a chemostat related model. SIAM J. Appl. Math. 49 (1989) 1759-1767. | Zbl

[12] Y. Kuang, Global stability of Gause type predator-prey systems. J. Math. Biol. 28 (1990) 463-474. | Zbl

[13] Y. Kuang, Delay Differential Equations with Applications in Population Dynamics. Academic Press, San Diego (1993). | MR | Zbl

[14] Y. Kuang and H.I. Freedman, Uniqueness of limit cycles in Gause type predator-prey systems. Math. Biosci. 88 (1988) 67-84. | Zbl

[15] R.M. May, Time-delay versus stability in population models with two and three trophic levels. Ecology 54 (1973) 315-325.

[16] D. Mukherjee and A.B. Roy, Uniform persistence and global attractivity theorem for generalized prey-predator system with time delay. Nonlinear Anal. 38 (1999) 59-74. | Zbl

[17] R.E. Ricklefs and G.L. Miller, Ecology. W.H. Freeman and Company, New York (2000).

[18] C.E. Taylor and R.R. Sokal, Oscillations of housefly population sizes due to time lags. Ecology 57 (1976) 1060-1067.

[19] B.G. Vielleux, An analysis of the predatory interactions between Paramecium and Didinium, J. Anim. Ecol. 48 (1979) 787-803.

[20] W.D. Wang and Z.E. Ma, Harmless delays for uniform persistence. J. Math. Anal. Appl. 158 (1991) 256-268. | Zbl

Cité par Sources :