A finite element method for domain decomposition with non-matching grids
ESAIM: Modélisation mathématique et analyse numérique, Tome 37 (2003) no. 2, pp. 209-225.

In this note, we propose and analyse a method for handling interfaces between non-matching grids based on an approach suggested by Nitsche (1971) for the approximation of Dirichlet boundary conditions. The exposition is limited to self-adjoint elliptic problems, using Poisson's equation as a model. A priori and a posteriori error estimates are given. Some numerical results are included.

DOI : 10.1051/m2an:2003023
Classification : 65N30, 65N55
Mots-clés : Nitsche's method, domain decomposition, non-matching grids
Becker, Roland 1 ; Hansbo, Peter  ; Stenberg, Rolf 

1 Heidelberg University, Germany
@article{M2AN_2003__37_2_209_0,
     author = {Becker, Roland and Hansbo, Peter and Stenberg, Rolf},
     title = {A finite element method for domain decomposition with non-matching grids},
     journal = {ESAIM: Mod\'elisation math\'ematique et analyse num\'erique},
     pages = {209--225},
     publisher = {EDP-Sciences},
     volume = {37},
     number = {2},
     year = {2003},
     doi = {10.1051/m2an:2003023},
     mrnumber = {1991197},
     zbl = {1047.65099},
     language = {en},
     url = {http://www.numdam.org/articles/10.1051/m2an:2003023/}
}
TY  - JOUR
AU  - Becker, Roland
AU  - Hansbo, Peter
AU  - Stenberg, Rolf
TI  - A finite element method for domain decomposition with non-matching grids
JO  - ESAIM: Modélisation mathématique et analyse numérique
PY  - 2003
SP  - 209
EP  - 225
VL  - 37
IS  - 2
PB  - EDP-Sciences
UR  - http://www.numdam.org/articles/10.1051/m2an:2003023/
DO  - 10.1051/m2an:2003023
LA  - en
ID  - M2AN_2003__37_2_209_0
ER  - 
%0 Journal Article
%A Becker, Roland
%A Hansbo, Peter
%A Stenberg, Rolf
%T A finite element method for domain decomposition with non-matching grids
%J ESAIM: Modélisation mathématique et analyse numérique
%D 2003
%P 209-225
%V 37
%N 2
%I EDP-Sciences
%U http://www.numdam.org/articles/10.1051/m2an:2003023/
%R 10.1051/m2an:2003023
%G en
%F M2AN_2003__37_2_209_0
Becker, Roland; Hansbo, Peter; Stenberg, Rolf. A finite element method for domain decomposition with non-matching grids. ESAIM: Modélisation mathématique et analyse numérique, Tome 37 (2003) no. 2, pp. 209-225. doi : 10.1051/m2an:2003023. http://www.numdam.org/articles/10.1051/m2an:2003023/

[1] J.-P. Aubin, Approximation of Elliptic Boundary-Value Problem. Wiley (1972). | MR | Zbl

[2] D. Arnold, An interior penalty finite element method with discontinuous elements. SIAM J. Numer. Anal. 19 (1982) 742-760. | Zbl

[3] C. Baiocchi, F. Brezzi and L.D. Marini, Stabilization of Galerkin methods and applications to domain decomposition, in Future Tendencies in Computer Science, Control and Applied Mathematics, A. Bensoussan and J.-P. Verjus Eds., Springer (1992) 345-355.

[4] J.C. Barbosa and T.J.R. Hughes, Boundary Lagrange multipliers in finite element methods: error analysis in natural norms. Numer. Math. 62 (1992) 1-15. | EuDML | Zbl

[5] J.W. Barrett and C.M. Elliot, Finite element approximation of the Dirichlet problem using the boundary penalty method. Numer. Math. 49 (1986) 343-366. | EuDML | Zbl

[6] R. Becker and P. Hansbo, Discontinuous Galerkin methods for convection-diffusion problems with arbitrary Péclet number, in Numerical Mathematics and Advanced Applications: Proceedings of the 3rd European Conference, P. Neittaanmäki, T. Tiihonen and P. Tarvainen Eds., World Scientific (2000) 100-109. | Zbl

[7] R. Becker and R. Rannacher, A feed-back approach to error control in finite element methods: basic analysis and examples. East-West J. Numer. Math. 4 (1996) 237-264. | Zbl

[8] C. Bernadi, Y. Maday and A. Patera, A new nonconforming approach to domain decomposition: the mortar element method, in Nonlinear Partial Differential Equations and Their Application, H. Brezis and J.L. Lions Eds., Pitman (1989). | Zbl

[9] F. Brezzi, L.P. Franca, D. Marini and A. Russo, Stabilization techniques for domain decomposition methods with non-matching grids, IAN-CNR Report N. 1037, Istituto di Analisi Numerica Pavia.

[10] J. Freund and R. Stenberg, On weakly imposed boundary conditions for second order problems, in Proceedings of the Ninth Int. Conf. Finite Elements in Fluids, M. Morandi Cecchi et al. Eds., Venice (1995) 327-336.

[11] J. Freund, Space-time finite element methods for second order problems: an algorithmic approach. Acta Polytech. Scand. Math. Comput. Manage. Eng. Ser. 79 (1996). | MR | Zbl

[12] B. Heinrich and S. Nicaise, Nitsche mortar finite element method for transmission problems with singularities. SFB393-Preprint 2001-10, Technische Universität Chemnitz (2001). | MR | Zbl

[13] B. Heinrich and K. Pietsch, Nitsche type mortaring for some elliptic problem with corner singularities. Computing 68 (2002) 217-238. | Zbl

[14] C. Johnson and P. Hansbo, Adaptive finite element methods in computational mechanics. Comput. Methods Appl. Mech. Engrg. 101 (1992) 143-181. | Zbl

[15] P. Le Tallec and T. Sassi, Domain decomposition with nonmatching grids: augmented Lagrangian approach. Math. Comp. 64 (1995) 1367-1396. | Zbl

[16] P.L. Lions, On the Schwarz alternating method III: a variant for nonoverlapping subdomains, in Third International Symposium on Domain Decomposition Methods for Partial Differential Equations, T.F. Chan, R. Glowinski, J. Periaux and O.B. Widlund Eds., SIAM (1989) 202-223. | Zbl

[17] J. Nitsche, Über ein Variationsprinzip zur Lösung von Dirichlet-Problemen bei Verwendung von Teilräumen, die keinen Randbedingungen unterworfen sind. Abh. Math. Sem. Univ. Hamburg 36 (1971) 9-15. | Zbl

[18] R. Stenberg, On some techniques for approximating boundary conditions in the finite element method. J. Comput. Appl. Math. 63 (1995) 139-148. | Zbl

[19] R. Stenberg, Mortaring by a method of J.A. Nitsche, in Computational Mechanics: New Trends and Applications, S. Idelsohn, E. Onate and E. Dvorkin Eds., CIMNE, Barcelona (1998). | MR

[20] V. Thomée, Galerkin Finite Element Methods for Parabolic Problems. Springer (1997). | MR | Zbl

[21] B.I. Wohlmuth, A residual based error estimator for mortar finite element discretizations. Numer. Math. 84 (1999) 143-171. | Zbl

Cité par Sources :