We establish an asymptotic representation formula for the steady state voltage perturbations caused by low volume fraction internal conductivity inhomogeneities. This formula generalizes and unifies earlier formulas derived for special geometries and distributions of inhomogeneities.
Mots clés : voltage perturbations, conductivity inhomogeneities, low volume fraction
@article{M2AN_2003__37_1_159_0, author = {Capdeboscq, Yves and Vogelius, Michael S.}, title = {A general representation formula for boundary voltage perturbations caused by internal conductivity inhomogeneities of low volume fraction}, journal = {ESAIM: Mod\'elisation math\'ematique et analyse num\'erique}, pages = {159--173}, publisher = {EDP-Sciences}, volume = {37}, number = {1}, year = {2003}, doi = {10.1051/m2an:2003014}, mrnumber = {1972656}, zbl = {1137.35346}, language = {en}, url = {http://www.numdam.org/articles/10.1051/m2an:2003014/} }
TY - JOUR AU - Capdeboscq, Yves AU - Vogelius, Michael S. TI - A general representation formula for boundary voltage perturbations caused by internal conductivity inhomogeneities of low volume fraction JO - ESAIM: Modélisation mathématique et analyse numérique PY - 2003 SP - 159 EP - 173 VL - 37 IS - 1 PB - EDP-Sciences UR - http://www.numdam.org/articles/10.1051/m2an:2003014/ DO - 10.1051/m2an:2003014 LA - en ID - M2AN_2003__37_1_159_0 ER -
%0 Journal Article %A Capdeboscq, Yves %A Vogelius, Michael S. %T A general representation formula for boundary voltage perturbations caused by internal conductivity inhomogeneities of low volume fraction %J ESAIM: Modélisation mathématique et analyse numérique %D 2003 %P 159-173 %V 37 %N 1 %I EDP-Sciences %U http://www.numdam.org/articles/10.1051/m2an:2003014/ %R 10.1051/m2an:2003014 %G en %F M2AN_2003__37_1_159_0
Capdeboscq, Yves; Vogelius, Michael S. A general representation formula for boundary voltage perturbations caused by internal conductivity inhomogeneities of low volume fraction. ESAIM: Modélisation mathématique et analyse numérique, Tome 37 (2003) no. 1, pp. 159-173. doi : 10.1051/m2an:2003014. http://www.numdam.org/articles/10.1051/m2an:2003014/
[1] Optimal size estimates for the inverse conductivity problem with one measurement. Proc. Amer. Math. Soc. 128 (2000) 53-64. | Zbl
, and ,[2] High-order terms in the asymptotic expansions of the steady-state voltage potentials in the presence of conductivity inhomogeneities of small diameter. Preprint (2002). | MR | Zbl
and ,[3] A new formula for the reconstruction of conductivity inhomogeneities. Preprint (2002).
and ,[4] Boundary integral formulae for the reconstruction of electric and electromagnetic inhomogeneities of small volume. ESAIM Control Optim. Calc. Var. 9 (2003) 49-66. | Numdam | Zbl
, and ,[5] Asymptotic formulas for steady state voltage potentials in the presence of conductivity imperfections of small area. Z. Angew. Math. Phys. 52 (2001) 543-572. | Zbl
, and ,[6] Asymptotic formulas for steady state voltage potentials in the presence of thin inhomogeneities. A rigorous error analysis. Preprint (2002). | MR | Zbl
, and ,[7] A direct impedance tomography algorithm for locating small inhomogeneities. Numer. Math. (to appear). | MR | Zbl
, and ,[8] Optimal asymptotic estimates for the volume of internal inhomogeneities in terms of multiple boundary measurements. ESAIM: M2AN (to appear). | Numdam | MR | Zbl
and ,[9] Identification of conductivity imperfections of small diameter by boundary measurements. Continuous dependence and computational reconstruction. Inverse Problems 14 (1998) 553-595. | Zbl
, and ,[10] Identification of small inhomogeneities of extreme conductivity by boundary measurements: a theorem on continuous dependence. Arch. Ration. Mech. Anal. 105 (1989) 299-326. | Zbl
and ,[11] Elliptic Partial Differential Equations of Second Order. Grundlehren der mathematischen Wissenschaften, Vol. 224. Springer-Verlag, Berlin, Heidelberg, New York (1983). | MR | Zbl
and ,[12] The inverse conductivity problem with one measurement: stability and estimation of size. SIAM J. Math. Anal. 28 (1997) 1389-1405. | Zbl
, and ,[13] A real time algorithm for the location search of discontinuous conductivities with one measurement. Comm. Pure Appl. Math. 55 (2002) 1-29. | Zbl
, and ,[14] H-Convergence, in Topics in the Mathematical Modelling of Composite Materials, A. Cherkaev and R.V. Kohn Eds., Progress in Nonlinear Differential Equations and Their Applications, Vol. 31, pp. 21-43. Birkhäuser, Boston, Basel, Berlin (1997). | Zbl
and ,[15] Diffusion in random media, Surveys in Applied Mathematics, Vol. 1, Chap. 3, J.B. Keller, D.W. Mclaughlin and G.C. Papanicolaou Eds., Plenum Press, New York (1995). | MR | Zbl
,Cité par Sources :