The Boltzmann-Poisson system modeling the electron flow in semiconductors is used to discuss the validity of the Child-Langmuir asymptotics. The scattering kernel is approximated by a simple relaxation time operator. The Child-Langmuir limit gives an approximation of the current-voltage characteristic curves by means of a scaling procedure in which the ballistic velocity is much larger that the thermal one. We discuss the validity of the Child-Langmuir regime by performing detailed numerical comparisons between the simulation of the Boltzmann-Poisson system and the Child-Langmuir equations in test problems.
Mots-clés : Boltzmann-Poisson system, Child-Langmuir limit, WENO schemes, semiconductor devices
@article{M2AN_2002__36_6_1161_0, author = {C\'aceres, Mar{\'\i}a-Jos\'e and Carrillo, Jos\'e-Antonio and Degond, Pierre}, title = {The {Child-Langmuir} limit for semiconductors : a numerical validation}, journal = {ESAIM: Mod\'elisation math\'ematique et analyse num\'erique}, pages = {1161--1176}, publisher = {EDP-Sciences}, volume = {36}, number = {6}, year = {2002}, doi = {10.1051/m2an:2003011}, zbl = {1028.35102}, mrnumber = {1958663}, language = {en}, url = {http://www.numdam.org/articles/10.1051/m2an:2003011/} }
TY - JOUR AU - Cáceres, María-José AU - Carrillo, José-Antonio AU - Degond, Pierre TI - The Child-Langmuir limit for semiconductors : a numerical validation JO - ESAIM: Modélisation mathématique et analyse numérique PY - 2002 SP - 1161 EP - 1176 VL - 36 IS - 6 PB - EDP-Sciences UR - http://www.numdam.org/articles/10.1051/m2an:2003011/ DO - 10.1051/m2an:2003011 LA - en ID - M2AN_2002__36_6_1161_0 ER -
%0 Journal Article %A Cáceres, María-José %A Carrillo, José-Antonio %A Degond, Pierre %T The Child-Langmuir limit for semiconductors : a numerical validation %J ESAIM: Modélisation mathématique et analyse numérique %D 2002 %P 1161-1176 %V 36 %N 6 %I EDP-Sciences %U http://www.numdam.org/articles/10.1051/m2an:2003011/ %R 10.1051/m2an:2003011 %G en %F M2AN_2002__36_6_1161_0
Cáceres, María-José; Carrillo, José-Antonio; Degond, Pierre. The Child-Langmuir limit for semiconductors : a numerical validation. ESAIM: Modélisation mathématique et analyse numérique, Tome 36 (2002) no. 6, pp. 1161-1176. doi : 10.1051/m2an:2003011. http://www.numdam.org/articles/10.1051/m2an:2003011/
[1] Asymptotic analysis of the transient Vlasov-Poisson system for a plane diode. Asymptot. Anal. 16 (1998) 25-48. | Zbl
, and ,[2] Ballistic structure in the electron distribution function of small semiconducting structures: General features and specific trends. Phys. Rev. B 36 (1987) 1487-1502.
and ,[3] The Child-Langmuir regime for electron transport in a plasma including a background of positive ions. Math. Models Methods Appl. Sci. 4 (1994) 409-438.
,[4] Convergence of the Child-Langmuir asymptotics of the Boltzmann equation of semiconductors. SIAM J. Math. Anal. 27 (1996) 92-109. | Zbl
,[5] Étude de modèles asymptotiques de transport de particules chargées: Asymptotique de Child-Langmuir. Ph.D. thesis.
,[6] The Child-Langmuir law for the Boltzmann equation of semiconductors. SIAM J. Math. Anal. 26 (1995) 364-398. | Zbl
and ,[7] The Child-Langmuir law in the kinetic theory of charged particles: semiconductors models. Mathematical problems in semiconductor physics, Rome (1993) 76-102. Longman, Harlow, Pitman Res. Notes Math. Ser. 340 (1995). | Zbl
and ,[8] The Child-Langmuir asymptotics for magnetized flows. Asymptot. Anal. 20 (1999) 97-13. | Zbl
, and ,[9] On a mathemaical model of hot-carrier injection in semiconductors. Math. Methods Appl. Sci. 17 (1994) 1193-1212. | Zbl
, and ,[10] Comparison of Monte Carlo and deterministic simulations of a silicon diode. IMA series (to be published). | Zbl
, , and ,[11] Computational macroscopic approximations to the 1-D relaxation-time kinetic system for semiconductors. Phys. D 146 (2000) 289-306. | Zbl
, and ,[12] An asymptotic analysis of the one-dimensional Vlasov-Poisson system: the Child-Langmuir law. Asymptot. Anal. 4 (1991) 187-214. | Zbl
and ,[13] On a penalization of the Child-Langmuir emission condition for the one-dimensional Vlasov-Poisson equation. Asymptot. Anal. 6 (1992) 1-27.
and ,[14] Efficient implementation of weighted ENO schemes. J. Comput. Phys. 126 (1996) 202-228. | Zbl
and ,[15] Electrical discharges in gases: Part II, fundamental phenomena in electrical discharges. Rev. Modern Phys. 3 (1931) 191-257.
and ,[16] Semiconductor Equations. Springer, New York (1990). | MR | Zbl
, and ,[17] Essentially non-oscillatory and weighted essentially non-oscillatory schemes for hyperbolic conservation laws, Advanced Numerical Approximation of Nonlinear Hyperbolic Equations, B. Cockburn, C. Johnson, C.-W. Shu and E. Tadmor (A. Quarteroni Ed.). Springer, Lecture Notes in Math. 1697 (1998) 325-432. | Zbl
,[18] Ballistic transport in semiconductors at low temperature for low-power high-speed logic. IEEE Trans. Electron Dev. ED-26 (1979) 1677-1683.
and ,[19] Near ballistic transport in GaAs devices at 77 K. Solid-State Electron 24 (1991) 11-18.
and ,Cité par Sources :