Domain decomposition techniques provide a powerful tool for the numerical approximation of partial differential equations. We focus on mortar finite element methods on non-matching triangulations. In particular, we discuss and analyze dual Lagrange multiplier spaces for lowest order finite elements. These non standard Lagrange multiplier spaces yield optimal discretization schemes and a locally supported basis for the associated constrained mortar spaces. As a consequence, standard efficient iterative solvers as multigrid methods or domain decomposition techniques can be easily adapted to the nonconforming situation. Here, we introduce new dual Lagrange multiplier spaces. We concentrate on the construction of locally supported and continuous dual basis functions. The optimality of the associated mortar method is shown. Numerical results illustrate the performance of our approach.
Mots-clés : Mortar finite elements, dual space, non-matching triangulations, multigrid methods
@article{M2AN_2002__36_6_995_0, author = {Wohlmuth, Barbara I.}, title = {A comparison of dual {Lagrange} multiplier spaces for {Mortar} finite element discretizations}, journal = {ESAIM: Mod\'elisation math\'ematique et analyse num\'erique}, pages = {995--1012}, publisher = {EDP-Sciences}, volume = {36}, number = {6}, year = {2002}, doi = {10.1051/m2an:2003002}, mrnumber = {1958655}, zbl = {1024.65111}, language = {en}, url = {http://www.numdam.org/articles/10.1051/m2an:2003002/} }
TY - JOUR AU - Wohlmuth, Barbara I. TI - A comparison of dual Lagrange multiplier spaces for Mortar finite element discretizations JO - ESAIM: Modélisation mathématique et analyse numérique PY - 2002 SP - 995 EP - 1012 VL - 36 IS - 6 PB - EDP-Sciences UR - http://www.numdam.org/articles/10.1051/m2an:2003002/ DO - 10.1051/m2an:2003002 LA - en ID - M2AN_2002__36_6_995_0 ER -
%0 Journal Article %A Wohlmuth, Barbara I. %T A comparison of dual Lagrange multiplier spaces for Mortar finite element discretizations %J ESAIM: Modélisation mathématique et analyse numérique %D 2002 %P 995-1012 %V 36 %N 6 %I EDP-Sciences %U http://www.numdam.org/articles/10.1051/m2an:2003002/ %R 10.1051/m2an:2003002 %G en %F M2AN_2002__36_6_995_0
Wohlmuth, Barbara I. A comparison of dual Lagrange multiplier spaces for Mortar finite element discretizations. ESAIM: Modélisation mathématique et analyse numérique, Tome 36 (2002) no. 6, pp. 995-1012. doi : 10.1051/m2an:2003002. http://www.numdam.org/articles/10.1051/m2an:2003002/
[1] UG - a flexible software toolbox for solving partial differential equations. Comput. Vis. Sci. 1 (1997) 27-40. | Zbl
, , , , , and ,[2] Stability estimates of the mortar finite element method for 3-dimensional problems. East-West J. Numer. Math. 6 (1998) 249-263. | Zbl
and ,[3] The mortar finite element method with Lagrange multipliers. Numer. Math. 84 (1999) 173-197. | Zbl
,[4] The mortar element method for three dimensional finite elements. RAIRO Modél. Math. Anal. Numér. 31 (1997) 289-302. | Numdam | Zbl
and ,[5] Domain decomposition by the mortar element method, in: Asymptotic and numerical methods for partial differential equations with critical parameters, H. Kaper et al. Eds., Reidel, Dordrecht (1993) 269-286. | Zbl
, and ,[6] A new nonconforming approach to domain decomposition: the mortar element method, in: Nonlinear partial differential equations and their applications, H. Brezzi et al. Eds., Paris (1994) 13-51. | Zbl
, and ,[7] Numerical quadratures and mortar methods, in: Computational science for the 21st century. Dedicated to Prof. Roland Glowinski on the occasion of his 60th birthday. Symposium, Tours, France, May 5-7, 1997, John Wiley & Sons Ltd. (1997) 119-128. | Zbl
, and ,[8] Multiplier spaces for the mortar finite element method in three dimensions. SIAM J. Numer. Anal. 39 (2001) 519-538. | Zbl
, , and ,[9] Nonconforming domain decomposition techniques for linear elasticity. East-West J. Numer. Math. 8 (2000) 177-206. | Zbl
and ,[10] The influence of quadrature formulas in 3d mortar methods. Lect. Notes Comput. Sci. Eng. 22, Springer-Verlag (2002). | MR
, and ,[11] On polynomial reproduction of dual FE bases, in: Thirteenth Int. Conf. on Domain Decomposition Methods (2002) 85-96. | Zbl
and ,[12] Multigrid methods based on the unconstrained product space arising from mortar finite element discretizations. SIAM J. Numer. Anal. 39 (2001) 192-213. | Zbl
and ,[13] A mortar finite element method using dual spaces for the Lagrange multiplier. SIAM J. Numer. Anal. 38 (2000) 989-1012. | Zbl
,[14] Discretization methods and iterative solvers based on domain decomposition. Lecture Notes in Comput. Sci. 17, Springer, Heidelberg (2001). | MR | Zbl
,Cité par Sources :