A numerically inexpensive globalization strategy of sequential quadratic programming methods (SQP-methods) for control of the instationary Navier Stokes equations is investigated. Based on the proper functional analytic setting a convergence analysis for the globalized method is given. It is argued that the a priori formidable SQP-step can be decomposed into linear primal and linear adjoint systems, which is amenable for existing CFL-software. A report on a numerical test demonstrates the feasibility of the approach.
Mots-clés : globalized SQP-method, line search, Navier Stokes equations, optimal control
@article{M2AN_2002__36_4_725_0, author = {Hinterm\"uller, Michael and Hinze, Michael}, title = {Globalization of {SQP-methods} in control of the instationary {Navier-Stokes} equations}, journal = {ESAIM: Mod\'elisation math\'ematique et analyse num\'erique}, pages = {725--746}, publisher = {EDP-Sciences}, volume = {36}, number = {4}, year = {2002}, doi = {10.1051/m2an:2002032}, mrnumber = {1932311}, zbl = {1073.49025}, language = {en}, url = {http://www.numdam.org/articles/10.1051/m2an:2002032/} }
TY - JOUR AU - Hintermüller, Michael AU - Hinze, Michael TI - Globalization of SQP-methods in control of the instationary Navier-Stokes equations JO - ESAIM: Modélisation mathématique et analyse numérique PY - 2002 SP - 725 EP - 746 VL - 36 IS - 4 PB - EDP-Sciences UR - http://www.numdam.org/articles/10.1051/m2an:2002032/ DO - 10.1051/m2an:2002032 LA - en ID - M2AN_2002__36_4_725_0 ER -
%0 Journal Article %A Hintermüller, Michael %A Hinze, Michael %T Globalization of SQP-methods in control of the instationary Navier-Stokes equations %J ESAIM: Modélisation mathématique et analyse numérique %D 2002 %P 725-746 %V 36 %N 4 %I EDP-Sciences %U http://www.numdam.org/articles/10.1051/m2an:2002032/ %R 10.1051/m2an:2002032 %G en %F M2AN_2002__36_4_725_0
Hintermüller, Michael; Hinze, Michael. Globalization of SQP-methods in control of the instationary Navier-Stokes equations. ESAIM: Modélisation mathématique et analyse numérique, Tome 36 (2002) no. 4, pp. 725-746. doi : 10.1051/m2an:2002032. http://www.numdam.org/articles/10.1051/m2an:2002032/
[1] On some Control Problems in Fluid Mechanics. Theoret. Comput. Fluid Dyn. 1 (1990) 303-325. | Zbl
and ,[2] An adaptive Finite-Element-Strategy for the three-dimensional time-dependent Navier-Stokes Equations. J. Comput. Math. 36 (1991) 3-28. | Zbl
,[3] Nonlinear Programming. Athena Scientific, Belmont, Massachusetts (1995). | Zbl
,[4] Optimisation Numérique. Math. Appl. 27, Springer-Verlag, Berlin (1997). | MR | Zbl
et al.,[5] Optimal control of two-and three-dimensional incompressible Navier-Stokes Flows. J. Comput. Physics 136 (1997) 231-244. | Zbl
and ,[6] Practical Optimization. Academic Press, San Diego, California (1981). | MR | Zbl
et al.,[7] Finite element methods for the numerical simulation of incompressible viscous flow. Introduction to the Control of the Navier-Stokes Equations. Lect. Appl. Math. 28 (1991). | MR | Zbl
,[8] Algorithmic Methods in Optimal Control. Res. Notes Math. 47, Pitman, London (1980). | MR | Zbl
and ,[9] Formulation and analysis of a sequential quadratic programming method for the optimal Dirichlet boundary control of Navier-Stokes flow, in Optimal Control: Theory, Algorithms, and Applications, Kluwer Academic Publishers B.V. (1998) 178-203. | Zbl
,[10] On a globalized augmented Lagrangian-SQP algorithm for nonlinear optimal control problems with box constraints, in Fast solution methods for discretized optimization problems, K.-H. Hoffmann, R.H.W. Hoppe and V. Schulz Eds., Internat. Ser. Numer. Math. 138 (2001) 139-153. | Zbl
,[11] Optimal and instantaneous control of the instationary Navier-Stokes equations, Habilitationsschrift (1999). Fachbereich Mathematik, Technische Universität Berlin, download see http://www.math.tu-dresden.de/hinze/publications.html.
,[12] Second order methods for optimal control of time-dependent fluid flow. SIAM J. Optim. Control 40 (2001) 925-946. | Zbl
and ,[13] A numerical solution of the Navier-Stokes equations using the finite element technique. Comput. & Fluids 1 (1973) 73-100. | Zbl
and ,[14] Iterative Methods for Linear and Nonlinear Equations. SIAM (1995). | MR | Zbl
,[15] An infinite-dimensional convergence theory for reduced SQP-methods in Hilbert space. SIAM J. Optim. 6 (1996). | MR | Zbl
,[16] Optimization. Appl. Math. Sci. 124, Springer-Verlag, New York (1997). | Zbl
,[17] Variable metric methods for constrained optimization, in Mathematical Programming, The State of the Art, Eds. Bachem, Grötschel, Korte, Bonn (1982). | MR | Zbl
,[18] Methods for Solving Systems of Nonlinear Equations. CBMS-NSF Regional Conference Series in Applied Mathematics 70, SIAM, Philadelphia (1998). | MR | Zbl
,[19] On the convergence of a sequential quadratic programming method with an augmented Lagrangian line search function. Math. Operationsforschung u. Statist, Ser. Optim. 14 (1983) 197-216. | Zbl
,[20] Navier-Stokes Equations. North-Holland (1979). | MR | Zbl
,Cité par Sources :