In the present work the symmetrized sequential-parallel decomposition method of the third degree precision for the solution of Cauchy abstract problem with an operator under a split form, is presented. The third degree precision is reached by introducing a complex coefficient with the positive real part. For the considered schema the explicit a priori estimation is obtained.
Mots-clés : decomposition method, semigroup, Trotter formula, Cauchy abstract problem
@article{M2AN_2002__36_4_693_0, author = {Gegechkori, Zurab and Rogava, Jemal and Tsiklauri, Mikheil}, title = {High degree precision decomposition method for the evolution problem with an operator under a split form}, journal = {ESAIM: Mod\'elisation math\'ematique et analyse num\'erique}, pages = {693--704}, publisher = {EDP-Sciences}, volume = {36}, number = {4}, year = {2002}, doi = {10.1051/m2an:2002030}, mrnumber = {1932309}, zbl = {1070.65562}, language = {en}, url = {http://www.numdam.org/articles/10.1051/m2an:2002030/} }
TY - JOUR AU - Gegechkori, Zurab AU - Rogava, Jemal AU - Tsiklauri, Mikheil TI - High degree precision decomposition method for the evolution problem with an operator under a split form JO - ESAIM: Modélisation mathématique et analyse numérique PY - 2002 SP - 693 EP - 704 VL - 36 IS - 4 PB - EDP-Sciences UR - http://www.numdam.org/articles/10.1051/m2an:2002030/ DO - 10.1051/m2an:2002030 LA - en ID - M2AN_2002__36_4_693_0 ER -
%0 Journal Article %A Gegechkori, Zurab %A Rogava, Jemal %A Tsiklauri, Mikheil %T High degree precision decomposition method for the evolution problem with an operator under a split form %J ESAIM: Modélisation mathématique et analyse numérique %D 2002 %P 693-704 %V 36 %N 4 %I EDP-Sciences %U http://www.numdam.org/articles/10.1051/m2an:2002030/ %R 10.1051/m2an:2002030 %G en %F M2AN_2002__36_4_693_0
Gegechkori, Zurab; Rogava, Jemal; Tsiklauri, Mikheil. High degree precision decomposition method for the evolution problem with an operator under a split form. ESAIM: Modélisation mathématique et analyse numérique, Tome 36 (2002) no. 4, pp. 693-704. doi : 10.1051/m2an:2002030. http://www.numdam.org/articles/10.1051/m2an:2002030/
[1] Note on product formulas for operators semigroups. J. Funct. Anal. 2 (1968) 238-242. | Zbl
,[2] Semigroup product formulas and addition of unbounded operators. Bull. Amer. Mat. Soc. 76 (1970) 395-398. | Zbl
,[3] Commutateurs de certains semi-groupes holomorphes et applications aux directions alternées. RAIRO Modél. Math. Anal. Numér. 30 (1996) 343-383. | Numdam | Zbl
and ,[4] Difference schemas with decomposition operator for Multidimensional problems. JNM and MPh 2 (1962) 311-319.
,[5] Increased precision order economical schemas for the solution of parabolic type multidimensional equations. JNM and MPh 9 (1969) 1319-1326.
,[6] Sequential-Parallel method of high degree precision for Cauchy abstract problem solution. Tbilisi, in Reports of the Enlarged Session of the Seminar of I. Vekua Institute of Applied Mathematics 14 (1999). | MR
, and ,[7] On application of local one dimensional method for solving parabolic type multidimensional problems of 2m-degree. Proc. Acad. Sci. GSSR 3 (1965) 535-542.
,[8] On modeling multidimensional quasi-linear equation of parabolic type by one-dimensional ones. Proc. Acad. Sci. GSSR 60 (1970) 537-540. | Zbl
and ,[9] On modeling of third boundary value problem for the multidimensional parabolic equations of an arbitrary area by one-dimensional equations. JNM and MPh 14 (1974) 246-250. | Zbl
and ,[10] Some problems of plates and shells thermo elasticity and method of summary approximation. Complex Anal. Appl. (1978) 173-186. | Zbl
and ,[11] Fractional steps method of solving multidimensional problems of mathematical physics. Nauka, Novosibirsk (1967) 196 p.
,[12] The norm estimate of the difference between the Kac operator and the Schrodinger semigroup. Nagoya Math. J. 149 (1998) 53-81. | Zbl
and ,[13] Functional analysis. Springer-Verlag (1965).
,[14] The theory of perturbations of linear operators. Mir, Moscow (1972) 740 p. | Zbl
,[15] Linear equations in Banach space. Nauka, Moscow (1971), 464 p. | Zbl
,[16] Estimation of exactitude of summarized approximation of a solution of the Cauchy abstract problem. RAN USSR 275 (1984) 297-301. | Zbl
and ,[17] Split methods. Nauka, Moscow (1988) 264 p. | MR | Zbl
,[18] On the error estimation of Trotter type formulas in the case of self-Adjoint operator. Funct. Anal. Appl. 27 (1993) 84-86. | Zbl
,[19] Semi-discrete schemas for operator differential equations. Tbilisi, Georgian Technical University press (1995) 288 p.
,[20] Difference schemas theory. Nauka, Moscow (1977), 656 p. | MR | Zbl
,[21] Additive schemas for mathematical physics problems. Nauka, Moscow (1999). | MR | Zbl
and ,[22] Quelques méthodes de décomposition en analyse numérique. Actes Congrés Intern. Math. (1970) 311-319. | Zbl
,[23] On the product of semigroup of operators. Proc. Amer. Mat. Soc. 10 (1959) 545-551. | Zbl
,Cité par Sources :