Variational analysis for the Black and Scholes equation with stochastic volatility
ESAIM: Modélisation mathématique et analyse numérique, Tome 36 (2002) no. 3, pp. 373-395.

We propose a variational analysis for a Black and Scholes equation with stochastic volatility. This equation gives the price of a European option as a function of the time, of the price of the underlying asset and of the volatility when the volatility is a function of a mean reverting Orstein-Uhlenbeck process, possibly correlated with the underlying asset. The variational analysis involves weighted Sobolev spaces. It enables to prove qualitative properties of the solution, namely a maximum principle and additional regularity properties. Finally, we make numerical simulations of the solution, by finite element and finite difference methods.

DOI : 10.1051/m2an:2002018
Classification : 91B28, 91B24, 35K65, 65M06, 65M60
Mots-clés : degenerate parabolic equations, european options, weighted Sobolev spaces, finite element and finite difference method
@article{M2AN_2002__36_3_373_0,
     author = {Achdou, Yves and Tchou, Nicoletta},
     title = {Variational analysis for the {Black} and {Scholes} equation with stochastic volatility},
     journal = {ESAIM: Mod\'elisation math\'ematique et analyse num\'erique},
     pages = {373--395},
     publisher = {EDP-Sciences},
     volume = {36},
     number = {3},
     year = {2002},
     doi = {10.1051/m2an:2002018},
     mrnumber = {1918937},
     zbl = {1137.91421},
     language = {en},
     url = {http://www.numdam.org/articles/10.1051/m2an:2002018/}
}
TY  - JOUR
AU  - Achdou, Yves
AU  - Tchou, Nicoletta
TI  - Variational analysis for the Black and Scholes equation with stochastic volatility
JO  - ESAIM: Modélisation mathématique et analyse numérique
PY  - 2002
SP  - 373
EP  - 395
VL  - 36
IS  - 3
PB  - EDP-Sciences
UR  - http://www.numdam.org/articles/10.1051/m2an:2002018/
DO  - 10.1051/m2an:2002018
LA  - en
ID  - M2AN_2002__36_3_373_0
ER  - 
%0 Journal Article
%A Achdou, Yves
%A Tchou, Nicoletta
%T Variational analysis for the Black and Scholes equation with stochastic volatility
%J ESAIM: Modélisation mathématique et analyse numérique
%D 2002
%P 373-395
%V 36
%N 3
%I EDP-Sciences
%U http://www.numdam.org/articles/10.1051/m2an:2002018/
%R 10.1051/m2an:2002018
%G en
%F M2AN_2002__36_3_373_0
Achdou, Yves; Tchou, Nicoletta. Variational analysis for the Black and Scholes equation with stochastic volatility. ESAIM: Modélisation mathématique et analyse numérique, Tome 36 (2002) no. 3, pp. 373-395. doi : 10.1051/m2an:2002018. http://www.numdam.org/articles/10.1051/m2an:2002018/

[1] Y. Achdou and B. Franchi (in preparation).

[2] H. Brezis, Analyse Fonctionnelle, Théorie et Applications. Masson (1983). | MR | Zbl

[3] T. Cazenave and A. Haraux, An introduction to semilinear evolution equations. The Clarendon Press Oxford University Press, New York (1998). Translated from the 1990 French original by Y. Martel and revised by the authors. | MR | Zbl

[4] J. Douglas and T.F. Russell, Numerical methods for convection dominated diffusion problems based on combining the method of characteristics with finite element methods or finite difference method. SIAM J. Numer. Anal. 19 (1982) 871-885. | Zbl

[5] J.-P. Fouque, G. Papanicolaou and K. Ronnie Sircar. Derivatives in financial markets with stochastic volatility. Cambridge University Press, Cambridge (2000). | MR | Zbl

[6] B. Franchi, R. Serapioni and F. Serra Cassano. Meyers-Serrin type theorems and relaxation of variational integrals depending on vector fields. Houston J. Math. 22 (1996) 859-890. | Zbl

[7] B. Franchi and M.C. Tesi, A finite element approximation for a class of degenerate elliptic equations. Math. Comp. 69 (2000) 41-63. | Zbl

[8] K.O. Friedrichs, The identity of weak and strong extensions of differential operators. Trans. Amer. Math. Soc. 55 (1944) 132-151. | Zbl

[9] J.-L. Lions and E. Magenes, Problèmes aux limites non homogènes et applications. Vol. I and II. Dunod, Paris (1968). | Zbl

[10] A. Pazy, Semi-groups of linear operators and applications to partial differential equations. Appl. Math. Sci.. 44, Springer Verlag (1983). | MR | Zbl

[11] O. Pironneau and F. Hecht, FREEFEM. www.ann.jussieu.fr

[12] O. Pironneau and F. Hecht, Mesh adaption for the Black and Scholes equations. East-West J. Numer. Math. 8 (2000) 25-35. | Zbl

[13] M.H. Protter and H.F. Weinberger, Maximum principles in differential equations. Springer-Verlag, New York (1984). Corrected reprint of the 1967 original. | MR | Zbl

[14] E. Stein and J. Stein, Stock price distributions with stochastic volatility: an analytic approach. The review of financial studies 4 (1991) 727-752.

[15] H.A Van Der Vorst, Bi-cgstab: a fast and smoothly converging variant of bi-cg for the solution of nonlinear systems. SIAM J. Sci. Statist. Comput. 13 (1992) 631-644. | Zbl

[16] P. Willmott, J. Dewynne and J. Howison, Option pricing: mathematical models and computations. Oxford financial press (1993). | Zbl

Cité par Sources :