Impact of the variations of the mixing length in a first order turbulent closure system
ESAIM: Modélisation mathématique et analyse numérique, Tome 36 (2002) no. 2, pp. 345-372.

This paper is devoted to the study of a turbulent circulation model. Equations are derived from the “Navier-Stokes turbulent kinetic energy” system. Some simplifications are performed but attention is focused on non linearities linked to turbulent eddy viscosity ν t . The mixing length acts as a parameter which controls the turbulent part in ν t . The main theoretical results that we have obtained concern the uniqueness of the solution for bounded eddy viscosities and small values of and its asymptotic decreasing as in more general cases. Numerical experiments illustrate but also allow to extend these theoretical results: uniqueness is proved only for small enough while regular solutions are numerically obtained for any values of . A convergence theorem is proved for turbulent kinetic energy: k 0 as , but for velocity u we obtain only weaker results. Numerical results allow to conjecture that k 0, ν t and u 0 as . So we can conjecture that this classical turbulent model obtained with one degree of closure regularizes the solution.

DOI : 10.1051/m2an:2002016
Classification : 35Q30, 76M10, 76DXX, 76FXX, 46TXX, 65NXX
Mots clés : turbulence modelling, energy methods, mixing length, finite-elements approximations
@article{M2AN_2002__36_2_345_0,
     author = {Brossier, Fran\c{c}oise and Lewandowski, Roger},
     title = {Impact of the variations of the mixing length in a first order turbulent closure system},
     journal = {ESAIM: Mod\'elisation math\'ematique et analyse num\'erique},
     pages = {345--372},
     publisher = {EDP-Sciences},
     volume = {36},
     number = {2},
     year = {2002},
     doi = {10.1051/m2an:2002016},
     mrnumber = {1906822},
     zbl = {1040.35057},
     language = {en},
     url = {http://www.numdam.org/articles/10.1051/m2an:2002016/}
}
TY  - JOUR
AU  - Brossier, Françoise
AU  - Lewandowski, Roger
TI  - Impact of the variations of the mixing length in a first order turbulent closure system
JO  - ESAIM: Modélisation mathématique et analyse numérique
PY  - 2002
SP  - 345
EP  - 372
VL  - 36
IS  - 2
PB  - EDP-Sciences
UR  - http://www.numdam.org/articles/10.1051/m2an:2002016/
DO  - 10.1051/m2an:2002016
LA  - en
ID  - M2AN_2002__36_2_345_0
ER  - 
%0 Journal Article
%A Brossier, Françoise
%A Lewandowski, Roger
%T Impact of the variations of the mixing length in a first order turbulent closure system
%J ESAIM: Modélisation mathématique et analyse numérique
%D 2002
%P 345-372
%V 36
%N 2
%I EDP-Sciences
%U http://www.numdam.org/articles/10.1051/m2an:2002016/
%R 10.1051/m2an:2002016
%G en
%F M2AN_2002__36_2_345_0
Brossier, Françoise; Lewandowski, Roger. Impact of the variations of the mixing length in a first order turbulent closure system. ESAIM: Modélisation mathématique et analyse numérique, Tome 36 (2002) no. 2, pp. 345-372. doi : 10.1051/m2an:2002016. http://www.numdam.org/articles/10.1051/m2an:2002016/

[1] A. Belmiloudi and F. Brossier, Numerical study of a control method computing a three-dimensional flow from the observed surface pressure. IRMAR publication (2000).

[2] C. Bernardi, T. Chacon, F. Murat and R. Lewandowski, A model for two coupled turbulent fluids. Part II: Numerical analysis of a spectral discretization, to appear in Siam Journ. of Num. An. Part III: Numerical approximation by finite elements, submitted in Advance in Mathematical Science and Application. | MR | Zbl

[3] S. Clain and R. Touzani, Solution of a two-dimensional stationary induction heating problem without boundedness of the coefficients. RAIRO Modél. Math. Anal. Numér. 31 (1997) 845-870. | Numdam | Zbl

[4] J. Duchon and R. Robert, Inertial energy dissipation for weak solutions of incompressible Euler and Navier-Stokes equations. Nonlinearity 13 (2000) 249-255. | Zbl

[5] T. Gallouët and R. Herbin, Existence of a solution to a coupled elliptic system. Appl. Math. Lett. 17 (1994) 49-55. | Zbl

[6] T. Gallouët, J. Lederer, R. Lewandowski, F. Murat and L. Tartar, On a turbulent system with unbounded eddy viscosity, J. Nonlinear Analysis Theory, Methods and Analysis, in press. | Zbl

[7] V. Girault and P.A. Raviart, Finite element methods for Navier-Stokes equations, theory and algorithm, Springer-Verlag (1986). | MR | Zbl

[8] R. Lewandowski, Analyse Mathématique et Océanographie. Collection RMA, Masson (1997).

[9] R. Lewandowski, The mathematical analysis of the coupling of a turbulent kinetic energy equation to the Navier-Stokes equation with an eddy viscosity. Nonlinear Anal. 28 (1997) 393-417. | Zbl

[10] R. Lewandowski (in preparation).

[11] J.L. Lions and E. Magenes, Problèmes aux limites non homogènes et applications. Dunod (1968). | Zbl

[12] D. Martin and Melina, http://www.maths.univ-rennes1.fr/dmartin.

[13] B. Mohammadi and O. Pironneau, Analysis of the k-epsilon model. Collection RMA, Masson (1994). | MR

[14] J. Oxtoby, Categories and measures. Springer-Verlag (1979).

[15] O. Pironneau, Méthode des éléments finis pour les fluides, Masson (1988). | Zbl

Cité par Sources :