We consider a new formulation for finite volume element methods, which is satisfied by known finite volume methods and it can be used to introduce new ones. This framework results by approximating the test function in the formulation of finite element method. We analyze piecewise linear conforming or nonconforming approximations on nonuniform triangulations and prove optimal order norm and norm error estimates.
Mots-clés : finite volume methods, error estimates
@article{M2AN_2002__36_2_307_0, author = {Chatzipantelidis, Panagiotis}, title = {Finite volume methods for elliptic {PDE's} : a new approach}, journal = {ESAIM: Mod\'elisation math\'ematique et analyse num\'erique}, pages = {307--324}, publisher = {EDP-Sciences}, volume = {36}, number = {2}, year = {2002}, doi = {10.1051/m2an:2002014}, zbl = {1041.65087}, language = {en}, url = {http://www.numdam.org/articles/10.1051/m2an:2002014/} }
TY - JOUR AU - Chatzipantelidis, Panagiotis TI - Finite volume methods for elliptic PDE's : a new approach JO - ESAIM: Modélisation mathématique et analyse numérique PY - 2002 SP - 307 EP - 324 VL - 36 IS - 2 PB - EDP-Sciences UR - http://www.numdam.org/articles/10.1051/m2an:2002014/ DO - 10.1051/m2an:2002014 LA - en ID - M2AN_2002__36_2_307_0 ER -
%0 Journal Article %A Chatzipantelidis, Panagiotis %T Finite volume methods for elliptic PDE's : a new approach %J ESAIM: Modélisation mathématique et analyse numérique %D 2002 %P 307-324 %V 36 %N 2 %I EDP-Sciences %U http://www.numdam.org/articles/10.1051/m2an:2002014/ %R 10.1051/m2an:2002014 %G en %F M2AN_2002__36_2_307_0
Chatzipantelidis, Panagiotis. Finite volume methods for elliptic PDE's : a new approach. ESAIM: Modélisation mathématique et analyse numérique, Tome 36 (2002) no. 2, pp. 307-324. doi : 10.1051/m2an:2002014. http://www.numdam.org/articles/10.1051/m2an:2002014/
[1] Sobolev Spaces. Academic Press, New York (1975). | MR | Zbl
,[2] Some error estimates for the box method. SIAM J. Numer. Anal. 24 (1987) 777-787. | Zbl
and ,[3] The Mathematical Theory of Finite Element Methods. Springer-Verlag, New York (1994). | Zbl
and ,[4] Finite differences on triangular grids. Numer. Methods Partial Differential Equations 14 (1998) 567-579. | Zbl
, and ,[5] On the finite volume element method. Numer. Math. 58 (1991) 713-735. | Zbl
,[6] Convergence of an upstream finite volume scheme for a nonlinear hyperbolic equation on a triangular mesh. Numer. Math. 66 (1993) 139-157. | Zbl
, and ,[7] A finite volume method based on the Crouzeix-Raviart element for elliptic PDE's in two dimensions. Numer. Math. 82 (1999) 409-432. | Zbl
,[8] Error estimates for the finite volume element method for parabolic pde's in convex polygonal domains. In preparation. | Zbl
, and ,[9] The finite volume element method in nonconvex polygonal domains. To appear in Proceedings of the Third International Symposium on Finite Volumes for Complex Applications, Hermes Science Publications, Paris (2002). | MR | Zbl
and ,[10] A-posteriori error estimates of a finite volume scheme for the Stokes equations. In preparation.
, and ,[11] Analysis and convergence of a covolume method for the generalized Stokes problem. Math. Comp. 66 (1997) 85-104. | Zbl
,[12] Error estimates in , and in covolume methods for elliptic and parabolic problems: a unified approach. Math. Comp. 69 (2000) 103-120. | Zbl
and ,[13] Basic Error Estimates for Elliptic Problems. Handbook of Numerical Analysis, Vol. II, North-Holland, Amsterdam (1991) 17-351. | Zbl
,[14] Conforming and nonconforming finite element methods for solving the stationary Stokes equation I. RAIRO Anal. Numér. 7 (1973) 33-76. | Numdam | Zbl
and ,[15] Finite Volume Element Approximations of Nonlocal Reactive Flows in Porous Media. Numer. Methods Partial Differential Equations 16 (2000) 285-311. | Zbl
, and ,[16] Finite Volume Methods. Handbook of Numerical Analysis, Vol. VII, North-Holland, Amsterdam (2000). | Zbl
, and ,[17] Elliptic Problems in Nonsmooth Domains. Pitman, Massachusetts (1985). | MR | Zbl
,[18] On first and second order box schemes. Comput. 41 (1989) 277-296. | Zbl
,[19] On the finite volume element method for general self-adjoint elliptic problems. SIAM J. Numer. Anal. 35 (1998) 1762-1774. | Zbl
and ,[20] Error estimate in of a covolume method for the generalized Stokes Problem. Proceedings of the eight KAIST Math Workshop on Finite Element Method, KAIST (1997) 121-139.
and ,[21] Finite volume schemes for Hamilton-Jacobi equations. Numer. Math. 83 (1999) 427-442. | Zbl
, and ,[22] The finite volume element method with quadratic basis functions. Comput. 57 (1996) 281-299. | Zbl
,[23] Finite volume element methods for non-definite problems. Numer. Math. 83 (1999) 161-175. | Zbl
,[24] Numerical Solution of Convection-Diffusion Problems. Chapman & Hall, London (1996). | Zbl
,[25] High-order locally conservative finite volume-type approximations of one dimensional elliptic problems. Technical Report, TRITA-NA-0138, NADA, Royal Institute of Technology, Sweden.
and ,[26] Numerical Methods for Singularly Perturbed Differential Equations. Springer-Verlag, Berlin (1996). | Zbl
, and ,[27] Box schemes on quadrilateral meshes. Comput. 51 (1994) 271-292. | Zbl
,[28] Navier-Stokes Equations. North-Holland, Amsterdam (1979). | Zbl
,[29] On convergence of Block-Centered finite differences for elliptic problems. SIAM J. Num. Anal. 25 (1988) 351-375. | Zbl
and ,Cité par Sources :