This paper deals with the numerical approximation of mild solutions of elliptic-parabolic equations, relying on the existence results of Bénilan and Wittbold (1996). We introduce a new and simple algorithm based on Halpern's iteration for nonexpansive operators (Bauschke, 1996; Halpern, 1967; Lions, 1977), which is shown to be convergent in the degenerate case, and compare it with existing schemes (Jäger and Kačur, 1995; Kačur, 1999).
Mots-clés : elliptic-parabolic, numerical, iterative method
@article{M2AN_2002__36_1_143_0, author = {Maitre, Emmanuel}, title = {Numerical analysis of nonlinear elliptic-parabolic equations}, journal = {ESAIM: Mod\'elisation math\'ematique et analyse num\'erique}, pages = {143--153}, publisher = {EDP-Sciences}, volume = {36}, number = {1}, year = {2002}, doi = {10.1051/m2an:2002006}, mrnumber = {1916296}, zbl = {0998.65089}, language = {en}, url = {http://www.numdam.org/articles/10.1051/m2an:2002006/} }
TY - JOUR AU - Maitre, Emmanuel TI - Numerical analysis of nonlinear elliptic-parabolic equations JO - ESAIM: Modélisation mathématique et analyse numérique PY - 2002 SP - 143 EP - 153 VL - 36 IS - 1 PB - EDP-Sciences UR - http://www.numdam.org/articles/10.1051/m2an:2002006/ DO - 10.1051/m2an:2002006 LA - en ID - M2AN_2002__36_1_143_0 ER -
%0 Journal Article %A Maitre, Emmanuel %T Numerical analysis of nonlinear elliptic-parabolic equations %J ESAIM: Modélisation mathématique et analyse numérique %D 2002 %P 143-153 %V 36 %N 1 %I EDP-Sciences %U http://www.numdam.org/articles/10.1051/m2an:2002006/ %R 10.1051/m2an:2002006 %G en %F M2AN_2002__36_1_143_0
Maitre, Emmanuel. Numerical analysis of nonlinear elliptic-parabolic equations. ESAIM: Modélisation mathématique et analyse numérique, Tome 36 (2002) no. 1, pp. 143-153. doi : 10.1051/m2an:2002006. http://www.numdam.org/articles/10.1051/m2an:2002006/
[1] Quasilinear Elliptic-Parabolic Differential Equations. Math. Z. 183 (1983) 311-341. | Zbl
and ,[2] The approximation of fixed points of composition of nonexpansive mappings in Hilbert space. J. Math. Anal. Appl. 202 (1996) 150-159. | Zbl
,[3] Equation d’évolution du type dans . C.R. Acad. Sci. Paris Sér. A 281 (1975) 947-950. | Zbl
and ,[4] A numerical method for solving the problem . RAIRO Anal. Numér. 13 (1979) 297-312. | Numdam | Zbl
, and ,[5] On mild and weak solutions of elliptic-parabolic problems. Adv. Differential Equations 1 (1996) 1053-1073. | Zbl
and ,[6] Sur un problème parabolique-elliptique. ESAIM: M2AN 33 (1999) 121-127. | Numdam | Zbl
and ,[7] On Some Doubly Nonlinear Evolution Equations in Banach Spaces. Technical Report 775, Università di Pavia, Istituto di Analisi Numerica (1991). | MR | Zbl
,[8] On a class of doubly nonlinear evolution equations. Comm. Partial Differential Equations 15 (1990) 737-756. | Zbl
and ,[9] Fixed points of nonexpansive mappings. Bull. Amer. Math. Soc. 73 (1967) 957-961. | Zbl
,[10] Solution of Porous Medium Type Systems by Linear Approximation Schemes. Numer. Math. 60 (1991) 407-427. | Zbl
and ,[11] Solution of Doubly Nonlinear and Degenerate Parabolic Problems by Relaxation Schemes. RAIRO Modél. Math. Anal. Numér. 29 (1995) 605-627. | Numdam | Zbl
and ,[12] Solution of Some Free Boundary Problems by Relaxation Schemes. SIAM J. Numer. Anal. 36 (1999) 290-316. | Zbl
,[13] Solution of Nonlinear Diffusion Problems by Linear Approximation Schemes. SIAM J. Numer. Anal. 30 (1993) 1703-1722. | Zbl
, and ,[14] Quelques Méthodes de Résolution des Problèmes aux Limites Non Linéaires. Dunod (1969). | MR | Zbl
,[15] Approximation de points fixes de contractions. C.R. Acad. Sci. Paris Sér. A. 284 (1977) 1357-1359. | Zbl
,[16] Energy Error Estimates for a Linear Scheme to Approximate Nonlinear Parabolic Problems. RAIRO Modél. Math. Anal. Numér. 21 (1987) 655-678. | Numdam | Zbl
, and ,[17] Sur une classe d'équations à double non linéarité : application à la simulation numérique d'un écoulement visqueux compressible. Thèse, Université Grenoble I (1997).
,[18] A pseudomonotonicity adapted to doubly nonlinear elliptic-parabolic equations. Nonlinear Anal. TMA (to appear). | Zbl
and ,[19] -Contraction and Uniqueness for Quasilinear Elliptic-Parabolic Equations. J. Differential Equations 131 (1996) 20-38. | Zbl
,[20] Sur l’équation par la méthode des semi-groupes dans . Séminaire d'analyse non linéaire, Laboratoire de Mathématiques de Besançon (1984).
,Cité par Sources :