A parameter-robust iterative method for Stokes–Darcy problems retaining local mass conservation
ESAIM: Mathematical Modelling and Numerical Analysis , Tome 54 (2020) no. 6, pp. 2045-2067.

We consider a coupled model of free-flow and porous medium flow, governed by stationary Stokes and Darcy flow, respectively. The coupling between the two systems is enforced by introducing a single variable representing the normal flux across the interface. The problem is reduced to a system concerning only the interface flux variable, which is shown to be well-posed in appropriately weighted norms. An iterative solution scheme is then proposed to solve the reduced problem such that mass is conserved at each iteration. By introducing a preconditioner based on the weighted norms from the analysis, the performance of the iterative scheme is shown to be robust with respect to material and discretization parameters. By construction, the scheme is applicable to a wide range of locally conservative discretization schemes and we consider explicit examples in the framework of Mixed Finite Element methods. Finally, the theoretical results are confirmed with the use of numerical experiments.

Reçu le :
Accepté le :
Publié le :
DOI : 10.1051/m2an/2020035
Classification : 65N12, 65N55, 76D07, 76S05
Mots-clés : Coupled porous media and fluid flow, Mixed Finite Element method, mortar method, robust preconditioner
@article{M2AN_2020__54_6_2045_0,
     author = {Boon, Wietse M.},
     title = {A parameter-robust iterative method for {Stokes{\textendash}Darcy} problems retaining local mass conservation},
     journal = {ESAIM: Mathematical Modelling and Numerical Analysis },
     pages = {2045--2067},
     publisher = {EDP-Sciences},
     volume = {54},
     number = {6},
     year = {2020},
     doi = {10.1051/m2an/2020035},
     mrnumber = {4160325},
     zbl = {1486.65279},
     language = {en},
     url = {http://www.numdam.org/articles/10.1051/m2an/2020035/}
}
TY  - JOUR
AU  - Boon, Wietse M.
TI  - A parameter-robust iterative method for Stokes–Darcy problems retaining local mass conservation
JO  - ESAIM: Mathematical Modelling and Numerical Analysis 
PY  - 2020
SP  - 2045
EP  - 2067
VL  - 54
IS  - 6
PB  - EDP-Sciences
UR  - http://www.numdam.org/articles/10.1051/m2an/2020035/
DO  - 10.1051/m2an/2020035
LA  - en
ID  - M2AN_2020__54_6_2045_0
ER  - 
%0 Journal Article
%A Boon, Wietse M.
%T A parameter-robust iterative method for Stokes–Darcy problems retaining local mass conservation
%J ESAIM: Mathematical Modelling and Numerical Analysis 
%D 2020
%P 2045-2067
%V 54
%N 6
%I EDP-Sciences
%U http://www.numdam.org/articles/10.1051/m2an/2020035/
%R 10.1051/m2an/2020035
%G en
%F M2AN_2020__54_6_2045_0
Boon, Wietse M. A parameter-robust iterative method for Stokes–Darcy problems retaining local mass conservation. ESAIM: Mathematical Modelling and Numerical Analysis , Tome 54 (2020) no. 6, pp. 2045-2067. doi : 10.1051/m2an/2020035. http://www.numdam.org/articles/10.1051/m2an/2020035/

T. Arbogast, L.C. Cowsar, M.F. Wheeler and I. Yotov, Mixed finite element methods on nonmatching multiblock grids. SIAM J. Numer. Anal. 37 (2000) 1295–1315. | DOI | MR | Zbl

M.G. Armentano and M.L. Stockdale, A unified mixed finite element approximations of the Stokes-Darcy coupled problem. Comput. Math. App. 77 (2019) 2568–2584. | MR | Zbl

T. Bærland, M. Kuchta and K.-A. Mardal, Multigrid methods for discrete fractional Sobolev spaces. SIAM J. Sci. Comput. 41 (2019) A948–A972. | DOI | MR | Zbl

C. Bernardi and G. Raugel, Analysis of some finite elements for the Stokes problem. Math. Comput. 44 (1985) 71–79. | DOI | MR | Zbl

D. Boffi, F. Brezzi and M. Fortin, Mixed Finite Element Methods and Applications. Springer 44 (2013). | MR | Zbl

W.M. Boon, J.M. Nordbotten and I. Yotov, Robust discretization of flow in fractured porous media. SIAM J. Numer. Anal. 56 (2018) 2203–2233. | DOI | MR | Zbl

F. Brezzi, J. Douglas and L.D. Marini, Two families of mixed finite elements for second order elliptic problems. Numer. Math. 47 (1985) 217–235. | DOI | MR | Zbl

Y. Cao, M. Gunzburger, X. He and X. Wang, Robin-Robin domain decomposition methods for the steady-state Stokes-Darcy system with the Beavers-Joseph interface condition. Numer. Math. 117 (2011) 601–629. | DOI | MR | Zbl

M. Discacciati, Domain decomposition methods for the coupling of surface and groundwater flows. Ph.D. thesis (2004).

M. Discacciati, Iterative methods for Stokes/Darcy coupling. In: Domain Decomposition Methods in Science and Engineering, Springer (2005) 563–570. | DOI | MR | Zbl

M. Discacciati and L. Gerardo-Giorda, Optimized schwarz methods for the Stokes-Darcy coupling. IMA J. Numer. Anal. 38 (2018) 1959–1983. | DOI | MR | Zbl

M. Discacciati and A. Quarteroni, Navier–Stokes/Darcy coupling: modeling, analysis, and numerical approximation. Rev. Mat. Complut. 22 (2009) 315–426. | DOI | MR | Zbl

M. Discacciati, A. Quarteroni and A. Valli, Robin-Robin domain decomposition methods for the Stokes-Darcy coupling. SIAM J. Numer. Anal. 45 (2007) 1246–1268. | DOI | MR | Zbl

L. Evans, Partial Differential Equations. Graduate Studies in Mathematics. American Mathematical Society (2010). | MR | Zbl

T. Fetzer, C. Grüninger, B. Flemisch and R. Helmig, On the conditions for coupling free flow and porous-medium flow in a finite volume framework. In: International Conference on Finite Volumes for Complex Applications. Springer (2017) 347–356. | MR | Zbl

J. Galvis and M. Sarkis, Balancing domain decomposition methods for mortar coupling Stokes-Darcy systems. In: Domain Decomposition Methods in Science And Engineering XVI. Springer (2007) 373–380. | DOI | MR

M.J. Gander and, T. Vanzan, On the derivation of optimized transmission conditions for the Stokes-Darcy coupling.In: Domain Decomposition Methods in Science and Engineering XXV (2019). | MR | Zbl

G.N. Gatica, S. Meddahi and R. Oyarzúa, A conforming mixed finite-element method for the coupling of fluid flow with porous media flow. IMA J. Numer. Anal. 29 (2009) 86–108. | DOI | MR | Zbl

G. Gatica, R. Oyarzúa and F.-J. Sayas, Analysis of fully-mixed finite element methods for the Stokes-Darcy coupled problem. Math. Comput. 80 (2011) 1911–1948. | DOI | MR | Zbl

O. Iliev and V. Laptev, On numerical simulation of flow through oil filters. Comput. Visual. Sci. 6 (2004) 139–146. | DOI | Zbl

T. Karper, K.-A. Mardal and R. Winther, Unified finite element discretizations of coupled Darcy-Stokes flow. Numer. Methods Part. Differ. Equ. 25 (2009) 311–326. | DOI | MR | Zbl

M. Kuchta, M. Nordaas, J.C. Verschaeve, M. Mortensen and K.-A. Mardal, Preconditioners for saddle point systems with trace constraints coupling 2D and 1D domains. SIAM J. Sci. Comput. 38 (2016) B962–B987. | DOI | MR | Zbl

W.J. Layton, F. Schieweck and I. Yotov, Coupling fluid flow with porous media flow. SIAM J. Numer. Anal. 40 (2002) 2195–2218. | DOI | MR | Zbl

J.L. Lions and E. Magenes, Non-Homogeneous Boundary Value Problems and Applications. Springer Science & Business Media 1 (2012).

A. Logg, K.-A. Mardal and G. Wells, Automated Solution of Differential Equations by the Finite Element Method: The FEniCS Book. Springer Science & Business Media 84 (2012). | DOI | MR | Zbl

K.-A. Mardal and R. Winther, Preconditioning discretizations of systems of partial differential equations. Numer. Linear Algebra App. 18 (2011) 1–40. | DOI | MR | Zbl

R. Masson, L. Trenty and Y. Zhang, Coupling compositional liquid gas Darcy and free gas flows at porous and free-flow domains interface. J. Comput. Phys. 321 (2016) 708–728. | DOI | MR | Zbl

K. Mosthaf, K. Baber, B. Flemisch, R. Helmig, A. Leijnse, I. Rybak and B. Wohlmuth, A coupling concept for two-phase compositional porous-medium and single-phase compositional free flow. Water Resour. Res. 47 (2011). | DOI

J.M. Nordbotten, W.M. Boon, A. Fumagalli and E. Keilegavlen, Unified approach to discretization of flow in fractured porous media. Comput. Geosci. 23 (2019) 225–237. | DOI | MR | Zbl

A. Quarteroni, A. Valli and P. Valli, Domain Decomposition Methods for Partial Differential Equations. Numerical Mathematics and Scientific Computation. Clarendon Press (1999). | MR | Zbl

P.-A. Raviart and J.-M. Thomas, A mixed finite element method for 2-nd order elliptic problems. In: Mathematical Aspects of Finite Element Methods. Springer (1977) 292–315. | DOI | MR | Zbl

B. Rivière and I. Yotov, Locally conservative coupling of Stokes and Darcy flows. SIAM J. Numer. Anal. 42 (2005) 1959–1977. | DOI | MR | Zbl

I. Rybak, Mathematical modeling of coupled free flow and porous medium systems, Habilitation, University of Stuttgart (2016).

I. Rybak, J. Magiera, R. Helmig and C. Rohde, Multirate time integration for coupled saturated/unsaturated porous medium and free flow systems. Comput. Geosci. 19 (2015) 299–309. | DOI | MR | Zbl

Y. Saad and M.H. Schultz, GMRES: a generalized minimal residual algorithm for solving nonsymmetric linear systems. SIAM J. Sci. Stat. Comput. 7 (1986) 856–869. | DOI | MR | Zbl

M. Schneider, K. Weishaupt, D. Gläser, W.M. Boon and R. Helmig, Coupling staggered-grid and MPFA finite volume methods for free flow/porous-medium flow problems. J. Comput. Phys. 401 (2020) 109012. | DOI | MR | Zbl

Cité par Sources :