We consider energy norm a posteriori error analysis of conforming finite element approximations of singularly perturbed reaction–diffusion problems on simplicial meshes in arbitrary space dimension. Using an equilibrated flux reconstruction, the proposed estimator gives a guaranteed global upper bound on the error without unknown constants, and local efficiency robust with respect to the mesh size and singular perturbation parameters. Whereas previous works on equilibrated flux estimators only considered lowest-order finite element approximations and achieved robustness through the use of boundary-layer adapted submeshes or via combination with residual-based estimators, the present methodology applies in a simple way to arbitrary-order approximations and does not request any submesh or estimators combination. The equilibrated flux is obtained via local reaction–diffusion problems with suitable weights (cut-off factors), and the guaranteed upper bound features the same weights. We prove that the inclusion of these weights is not only sufficient but also necessary for robustness of any flux equilibration estimate that does not employ submeshes or estimators combination, which shows that some of the flux equilibrations proposed in the past cannot be robust. To achieve the fully computable upper bound, we derive explicit bounds for some inverse inequality constants on a simplex, which may be of independent interest.
Mots-clés : Singular perturbation, $$ error analysis, local efficiency, robustness, equilibrated flux
@article{M2AN_2020__54_6_1951_0, author = {Smears, Iain and Vohral{\'\i}k, Martin}, title = {Simple and robust equilibrated flux \protect\emph{a posteriori} estimates for singularly perturbed reaction{\textendash}diffusion problems}, journal = {ESAIM: Mathematical Modelling and Numerical Analysis }, pages = {1951--1973}, publisher = {EDP-Sciences}, volume = {54}, number = {6}, year = {2020}, doi = {10.1051/m2an/2020034}, mrnumber = {4160328}, language = {en}, url = {http://www.numdam.org/articles/10.1051/m2an/2020034/} }
TY - JOUR AU - Smears, Iain AU - Vohralík, Martin TI - Simple and robust equilibrated flux a posteriori estimates for singularly perturbed reaction–diffusion problems JO - ESAIM: Mathematical Modelling and Numerical Analysis PY - 2020 SP - 1951 EP - 1973 VL - 54 IS - 6 PB - EDP-Sciences UR - http://www.numdam.org/articles/10.1051/m2an/2020034/ DO - 10.1051/m2an/2020034 LA - en ID - M2AN_2020__54_6_1951_0 ER -
%0 Journal Article %A Smears, Iain %A Vohralík, Martin %T Simple and robust equilibrated flux a posteriori estimates for singularly perturbed reaction–diffusion problems %J ESAIM: Mathematical Modelling and Numerical Analysis %D 2020 %P 1951-1973 %V 54 %N 6 %I EDP-Sciences %U http://www.numdam.org/articles/10.1051/m2an/2020034/ %R 10.1051/m2an/2020034 %G en %F M2AN_2020__54_6_1951_0
Smears, Iain; Vohralík, Martin. Simple and robust equilibrated flux a posteriori estimates for singularly perturbed reaction–diffusion problems. ESAIM: Mathematical Modelling and Numerical Analysis , Tome 54 (2020) no. 6, pp. 1951-1973. doi : 10.1051/m2an/2020034. http://www.numdam.org/articles/10.1051/m2an/2020034/
Reliable and robust a posteriori error estimation for singularly perturbed reaction–diffusion problems. SIAM J. Numer. Anal. 36 (1999) 331–353. | DOI | MR | Zbl
and ,A Posteriori Error Estimation in Finite Element Analysis. Pure and Applied Mathematics (New York). Wiley-Interscience [John Wiley & Sons], New York (2000). | MR | Zbl
and ,Fully computable robust a posteriori error bounds for singularly perturbed reaction–diffusion problems. Numer. Math. 119 (2011) 219–243. | DOI | MR | Zbl
and ,Robust error bounds for finite element approximation of reaction–diffusion problems with non-constant reaction coefficient in arbitrary space dimension. Comput. Methods Appl. Mech. Engrg. 281 (2014) 184–199. | DOI | MR
and ,A simple approach to reliable and robust a posteriori error estimation for singularly perturbed problems. Comput. Methods Appl. Mech. Engrg. 353 (2019) 373–390. | DOI | MR
and ,Fully computable a posteriori error bounds for stabilised FEM approximations of convection–reaction–diffusion problems in three dimensions. Int. J. Numer. Methods Fluids 73 (2013) 765–790. | DOI | MR
, , and ,A posteriori error estimation of residual type for anisotropic diffusion–convection–reaction problems. J. Comput. Appl. Math. 235 (2011) 2805–2820. | DOI | MR | Zbl
, and ,Equilibrated residual error estimator for edge elements. Math. Comp. 77 (2008) 651–672. | DOI | MR | Zbl
and ,Equilibrated residual error estimates are -robust. Comput. Methods Appl. Mech. Engrg. 198 (2009) 1189–1197. | DOI | MR | Zbl
, and ,Guaranteed and robust a posteriori error estimates for singularly perturbed reaction–diffusion problems. ESAIM: M2AN 43 (2009) 867–888. | DOI | Numdam | MR | Zbl
, , and ,The finite element method for elliptic problems. In: Vol. 4 of Studies in Mathematics and its Applications. North-Holland, Amsterdam (1978). | MR | Zbl
,Maximum-norm a posteriori error estimates for singularly perturbed elliptic reaction–diffusion problems. Numer. Math. 133 (2016) 707–742. | DOI | MR
and ,Explicit error bounds in a conforming finite element method. Math. Comp. 68 (1999) 1379–1396. | DOI | MR | Zbl
and ,Mathematical aspects of discontinuous Galerkin methods. In: Vol. 69 of Mathématiques & Applications [Mathematics & Applications]. Springer, Heidelberg (2012). | DOI | MR | Zbl
and ,$hp$-adaptation driven by polynomial-degree-robust a posteriori error estimates for elliptic problems. SIAM J. Sci. Comput. 38 (2016) A3220–A3246. | DOI | MR
, and ,Equilibration a posteriori error estimation for convection–diffusion–reaction problems. J. Sci. Comput. 67 (2016) 747–768. | DOI | MR
and ,Functional a posteriori error estimation for stationary reaction–convection–diffusion problems. Comput. Methods Appl. Math. 14 (2014) 135–150. | DOI | MR | Zbl
and ,Adaptive inexact Newton methods with a posteriori stopping criteria for nonlinear diffusion PDEs. SIAM J. Sci. Comput. 35 (2013) A1761–A1791. | DOI | MR | Zbl
and ,Polynomial-degree-robust a posteriori estimates in a unified setting for conforming, nonconforming, discontinuous Galerkin, and mixed discretizations. SIAM J. Numer. Anal. 53 (2015) 1058–1081. | DOI | MR
and ,Stable broken H1 and H(div) polynomial extensions for polynomial-degree-robust potential and flux reconstruction in three space dimensions. Math. Comp. 89 (2020) 551–594. | DOI | MR
and ,Discrete p-robust H(div)-liftings and a posteriori estimates for elliptic problems with H−1 source terms. Calcolo 54 (2017) 1009–1025. | DOI | MR
, and ,Robust exponential convergence of -FEM in balanced norms for singularly perturbed reaction–diffusion problems: corner domains. Comput. Math. Appl. 74 (2017) 1576–1589. | DOI | MR
and ,An equilibrated residual method with a computable error approximation for a singularly perturbed reaction–diffusion problem on anisotropic finite element meshes. ESAIM: M2AN 40 (2006) 239–267. | DOI | Numdam | MR | Zbl
,New development in FreeFem++. J. Numer. Math. 20 (2012) 251–265. | DOI | MR | Zbl
,Maximum-norm a posteriori error estimates for singularly perturbed reaction–diffusion problems on anisotropic meshes. SIAM J. Numer. Anal. 53 (2015) 2519–2544. | DOI | MR
,Energy-norm a posteriori error estimates for singularly perturbed reaction–diffusion problems on anisotropic meshes. Numer. Math. 137 (2017) 607–642. | DOI | MR
,Fully computable a posteriori error estimator using anisotropic flux equilibration on anisotropic meshes. Preprint (2017). | arXiv
,Inverse inequality estimates with symbolic computation. Adv. Appl. Math. 80 (2016) 1–23. | DOI | MR
, and ,Robust a posteriori error estimation for a singularly perturbed reaction–diffusion equation on anisotropic tetrahedral meshes. Adv. Comput. Math. 15 (2001) 237–259. | DOI | MR | Zbl
,A posteriori error estimation for arbitrary order FEM applied to singularly perturbed one-dimensional reaction–diffusion problems. Appl. Math. 59 (2014) 241–256. | DOI | MR | Zbl
,Functional a posteriori estimates for the reaction–diffusion problem. C. R. Math. Acad. Sci. Paris 343 (2006) 349–354. | DOI | MR | Zbl
and ,and $hp$-finite element methods. In: Numerical Mathematics and Scientific Computation. The Clarendon Press, Oxford University Press, New York (1998). | MR | Zbl
,The uniform saturation property for a singularly perturbed reaction–diffusion equation. Numer. Math. 101 (2005) 355–379. | DOI | MR | Zbl
,Complementarity based a posteriori error estimates and their properties. Math. Comput. Simul. 82 (2012) 2033–2046. | DOI | MR | Zbl
,On the quality of local flux reconstructions for guaranteed error bounds. In: Applications of Mathematics 2015, Czech. Acad. Sci., Prague (2015), 242–255. | MR
,Robust a posteriori error estimators for a singularly perturbed reaction–diffusion equation. Numer. Math. 78 (1998) 479–493. | DOI | MR | Zbl
,Robust a posteriori error estimates for stationary convection-diffusion equations. SIAM J. Numer. Anal. 43 (2005) 1766–1782. | DOI | MR | Zbl
,A note on constant-free a posteriori error estimates. SIAM J. Numer. Anal. 47 (2009) 3180–3194. | DOI | MR | Zbl
,A posteriori error estimation techniques for finite element methods. In: Numerical Mathematics and Scientific Computation. Oxford University Press, Oxford (2013). | MR | Zbl
,On the constants in -finite element trace inverse inequalities. Comput. Methods Appl. Mech. Engrg. 192 (2003) 2765–2773. | DOI | MR | Zbl
and ,Robust a posteriori error estimates for conforming discretizations of a singularly perturbed reaction–diffusion problem on anisotropic meshes. Adv. Comput. Math. 40 (2014) 797–818. | DOI | MR | Zbl
and ,Cité par Sources :