Research Article
Simple and robust equilibrated flux a posteriori estimates for singularly perturbed reaction–diffusion problems
ESAIM: Mathematical Modelling and Numerical Analysis , Tome 54 (2020) no. 6, pp. 1951-1973.

We consider energy norm a posteriori error analysis of conforming finite element approximations of singularly perturbed reaction–diffusion problems on simplicial meshes in arbitrary space dimension. Using an equilibrated flux reconstruction, the proposed estimator gives a guaranteed global upper bound on the error without unknown constants, and local efficiency robust with respect to the mesh size and singular perturbation parameters. Whereas previous works on equilibrated flux estimators only considered lowest-order finite element approximations and achieved robustness through the use of boundary-layer adapted submeshes or via combination with residual-based estimators, the present methodology applies in a simple way to arbitrary-order approximations and does not request any submesh or estimators combination. The equilibrated flux is obtained via local reaction–diffusion problems with suitable weights (cut-off factors), and the guaranteed upper bound features the same weights. We prove that the inclusion of these weights is not only sufficient but also necessary for robustness of any flux equilibration estimate that does not employ submeshes or estimators combination, which shows that some of the flux equilibrations proposed in the past cannot be robust. To achieve the fully computable upper bound, we derive explicit bounds for some inverse inequality constants on a simplex, which may be of independent interest.

DOI : 10.1051/m2an/2020034
Classification : 65N30, 65N15
Mots-clés : Singular perturbation, $$ error analysis, local efficiency, robustness, equilibrated flux
@article{M2AN_2020__54_6_1951_0,
     author = {Smears, Iain and Vohral{\'\i}k, Martin},
     title = {Simple and robust equilibrated flux \protect\emph{a posteriori} estimates for singularly perturbed reaction{\textendash}diffusion problems},
     journal = {ESAIM: Mathematical Modelling and Numerical Analysis },
     pages = {1951--1973},
     publisher = {EDP-Sciences},
     volume = {54},
     number = {6},
     year = {2020},
     doi = {10.1051/m2an/2020034},
     mrnumber = {4160328},
     language = {en},
     url = {http://www.numdam.org/articles/10.1051/m2an/2020034/}
}
TY  - JOUR
AU  - Smears, Iain
AU  - Vohralík, Martin
TI  - Simple and robust equilibrated flux a posteriori estimates for singularly perturbed reaction–diffusion problems
JO  - ESAIM: Mathematical Modelling and Numerical Analysis 
PY  - 2020
SP  - 1951
EP  - 1973
VL  - 54
IS  - 6
PB  - EDP-Sciences
UR  - http://www.numdam.org/articles/10.1051/m2an/2020034/
DO  - 10.1051/m2an/2020034
LA  - en
ID  - M2AN_2020__54_6_1951_0
ER  - 
%0 Journal Article
%A Smears, Iain
%A Vohralík, Martin
%T Simple and robust equilibrated flux a posteriori estimates for singularly perturbed reaction–diffusion problems
%J ESAIM: Mathematical Modelling and Numerical Analysis 
%D 2020
%P 1951-1973
%V 54
%N 6
%I EDP-Sciences
%U http://www.numdam.org/articles/10.1051/m2an/2020034/
%R 10.1051/m2an/2020034
%G en
%F M2AN_2020__54_6_1951_0
Smears, Iain; Vohralík, Martin. Simple and robust equilibrated flux a posteriori estimates for singularly perturbed reaction–diffusion problems. ESAIM: Mathematical Modelling and Numerical Analysis , Tome 54 (2020) no. 6, pp. 1951-1973. doi : 10.1051/m2an/2020034. http://www.numdam.org/articles/10.1051/m2an/2020034/

M. Ainsworth and I. Babuška, Reliable and robust a posteriori error estimation for singularly perturbed reaction–diffusion problems. SIAM J. Numer. Anal. 36 (1999) 331–353. | DOI | MR | Zbl

M. Ainsworth and J.T. Oden, A Posteriori Error Estimation in Finite Element Analysis. Pure and Applied Mathematics (New York). Wiley-Interscience [John Wiley & Sons], New York (2000). | MR | Zbl

M. Ainsworth and T. Vejchodský, Fully computable robust a posteriori error bounds for singularly perturbed reaction–diffusion problems. Numer. Math. 119 (2011) 219–243. | DOI | MR | Zbl

M. Ainsworth and T. Vejchodský, Robust error bounds for finite element approximation of reaction–diffusion problems with non-constant reaction coefficient in arbitrary space dimension. Comput. Methods Appl. Mech. Engrg. 281 (2014) 184–199. | DOI | MR

M. Ainsworth and T. Vejchodský, A simple approach to reliable and robust a posteriori error estimation for singularly perturbed problems. Comput. Methods Appl. Mech. Engrg. 353 (2019) 373–390. | DOI | MR

M. Ainsworth, A. Allendes, G.R. Barrenechea and R. Rankin, Fully computable a posteriori error bounds for stabilised FEM approximations of convection–reaction–diffusion problems in three dimensions. Int. J. Numer. Methods Fluids 73 (2013) 765–790. | DOI | MR

T. Apel, S. Nicaise and D. Sirch, A posteriori error estimation of residual type for anisotropic diffusion–convection–reaction problems. J. Comput. Appl. Math. 235 (2011) 2805–2820. | DOI | MR | Zbl

D. Braess and J. Schöberl, Equilibrated residual error estimator for edge elements. Math. Comp. 77 (2008) 651–672. | DOI | MR | Zbl

D. Braess, V. Pillwein and J. Schöberl, Equilibrated residual error estimates are p -robust. Comput. Methods Appl. Mech. Engrg. 198 (2009) 1189–1197. | DOI | MR | Zbl

I. Cheddadi, R. Fučik, M.I. Prieto and M. Vohralk, Guaranteed and robust a posteriori error estimates for singularly perturbed reaction–diffusion problems. ESAIM: M2AN 43 (2009) 867–888. | DOI | Numdam | MR | Zbl

P.G. Ciarlet, The finite element method for elliptic problems. In: Vol. 4 of Studies in Mathematics and its Applications. North-Holland, Amsterdam (1978). | MR | Zbl

A. Demlow and N. Kopteva, Maximum-norm a posteriori error estimates for singularly perturbed elliptic reaction–diffusion problems. Numer. Math. 133 (2016) 707–742. | DOI | MR

P. Destuynder and B. Métivet, Explicit error bounds in a conforming finite element method. Math. Comp. 68 (1999) 1379–1396. | DOI | MR | Zbl

D.A. Di Pietro and A. Ern, Mathematical aspects of discontinuous Galerkin methods. In: Vol. 69 of Mathématiques & Applications [Mathematics & Applications]. Springer, Heidelberg (2012). | DOI | MR | Zbl

V. Dolejší, A. Ern and M. Vohralík, $hp$-adaptation driven by polynomial-degree-robust a posteriori error estimates for elliptic problems. SIAM J. Sci. Comput. 38 (2016) A3220–A3246. | DOI | MR

M. Eigel and C. Merdon, Equilibration a posteriori error estimation for convection–diffusion–reaction problems. J. Sci. Comput. 67 (2016) 747–768. | DOI | MR

M. Eigel and T. Samrowski, Functional a posteriori error estimation for stationary reaction–convection–diffusion problems. Comput. Methods Appl. Math. 14 (2014) 135–150. | DOI | MR | Zbl

A. Ern and M. Vohralk, Adaptive inexact Newton methods with a posteriori stopping criteria for nonlinear diffusion PDEs. SIAM J. Sci. Comput. 35 (2013) A1761–A1791. | DOI | MR | Zbl

A. Ern and M. Vohralk, Polynomial-degree-robust a posteriori estimates in a unified setting for conforming, nonconforming, discontinuous Galerkin, and mixed discretizations. SIAM J. Numer. Anal. 53 (2015) 1058–1081. | DOI | MR

A. Ern and M. Vohralk, Stable broken H1 and H(div) polynomial extensions for polynomial-degree-robust potential and flux reconstruction in three space dimensions. Math. Comp. 89 (2020) 551–594. | DOI | MR

A. Ern, I. Smears and M. Vohralk, Discrete p-robust H(div)-liftings and a posteriori estimates for elliptic problems with H−1 source terms. Calcolo 54 (2017) 1009–1025. | DOI | MR

M. Faustmann and J.M. Melenk, Robust exponential convergence of h p -FEM in balanced norms for singularly perturbed reaction–diffusion problems: corner domains. Comput. Math. Appl. 74 (2017) 1576–1589. | DOI | MR

S. Grosman, An equilibrated residual method with a computable error approximation for a singularly perturbed reaction–diffusion problem on anisotropic finite element meshes. ESAIM: M2AN 40 (2006) 239–267. | DOI | Numdam | MR | Zbl

F. Hecht, New development in FreeFem++. J. Numer. Math. 20 (2012) 251–265. | DOI | MR | Zbl

N. Kopteva, Maximum-norm a posteriori error estimates for singularly perturbed reaction–diffusion problems on anisotropic meshes. SIAM J. Numer. Anal. 53 (2015) 2519–2544. | DOI | MR

N. Kopteva, Energy-norm a posteriori error estimates for singularly perturbed reaction–diffusion problems on anisotropic meshes. Numer. Math. 137 (2017) 607–642. | DOI | MR

N. Kopteva, Fully computable a posteriori error estimator using anisotropic flux equilibration on anisotropic meshes. Preprint (2017). | arXiv

C. Koutschan, M. Neumüller and C.-S. Radu, Inverse inequality estimates with symbolic computation. Adv. Appl. Math. 80 (2016) 1–23. | DOI | MR

G. Kunert, Robust a posteriori error estimation for a singularly perturbed reaction–diffusion equation on anisotropic tetrahedral meshes. Adv. Comput. Math. 15 (2001) 237–259. | DOI | MR | Zbl

T. Linss, A posteriori error estimation for arbitrary order FEM applied to singularly perturbed one-dimensional reaction–diffusion problems. Appl. Math. 59 (2014) 241–256. | DOI | MR | Zbl

S.I. Repin and S. Sauter, Functional a posteriori estimates for the reaction–diffusion problem. C. R. Math. Acad. Sci. Paris 343 (2006) 349–354. | DOI | MR | Zbl

C. Schwab, p and $hp$-finite element methods. In: Numerical Mathematics and Scientific Computation. The Clarendon Press, Oxford University Press, New York (1998). | MR | Zbl

R.P. Stevenson, The uniform saturation property for a singularly perturbed reaction–diffusion equation. Numer. Math. 101 (2005) 355–379. | DOI | MR | Zbl

T. Vejchodský, Complementarity based a posteriori error estimates and their properties. Math. Comput. Simul. 82 (2012) 2033–2046. | DOI | MR | Zbl

T. Vejchodský, On the quality of local flux reconstructions for guaranteed error bounds. In: Applications of Mathematics 2015, Czech. Acad. Sci., Prague (2015), 242–255. | MR

R. Verfürth, Robust a posteriori error estimators for a singularly perturbed reaction–diffusion equation. Numer. Math. 78 (1998) 479–493. | DOI | MR | Zbl

R. Verfürth, Robust a posteriori error estimates for stationary convection-diffusion equations. SIAM J. Numer. Anal. 43 (2005) 1766–1782. | DOI | MR | Zbl

R. Verfürth, A note on constant-free a posteriori error estimates. SIAM J. Numer. Anal. 47 (2009) 3180–3194. | DOI | MR | Zbl

R. Verfürth, A posteriori error estimation techniques for finite element methods. In: Numerical Mathematics and Scientific Computation. Oxford University Press, Oxford (2013). | MR | Zbl

T. Warburton and J.S. Hesthaven, On the constants in h p -finite element trace inverse inequalities. Comput. Methods Appl. Mech. Engrg. 192 (2003) 2765–2773. | DOI | MR | Zbl

J. Zhao and S. Chen, Robust a posteriori error estimates for conforming discretizations of a singularly perturbed reaction–diffusion problem on anisotropic meshes. Adv. Comput. Math. 40 (2014) 797–818. | DOI | MR | Zbl

Cité par Sources :