Geometrically intrinsic modeling of shallow water flows
ESAIM: Mathematical Modelling and Numerical Analysis , Tome 54 (2020) no. 6, pp. 2125-2157.

Shallow water models of geophysical flows must be adapted to geometric characteristics in the presence of a general bottom topography with non-negligible slopes and curvatures, such as a mountain landscape. In this paper we derive an intrinsic shallow water model from the Navier–Stokes equations defined on a local reference frame anchored on the bottom surface. The equations resulting are characterized by non-autonomous flux functions and source terms embodying only the geometric information. We show that the proposed model is rotational invariant, admits a conserved energy, is well-balanced, and it is formally a second order approximation of the Navier–Stokes equations with respect to a geometry-based order parameter. We then derive a numerical discretization by means of a first order upwind Godunov finite volume scheme intrinsically defined on the bottom surface. We study convergence properties of the resulting scheme both theoretically and numerically. Simulations on several synthetic test cases are used to validate the theoretical results as well as more experimental properties of the solver. The results show the importance of taking into full consideration the bottom geometry even for relatively mild and slowly varying curvatures.

DOI : 10.1051/m2an/2020031
Classification : 76M12, 65M08, 35L65, 58J45
Mots-clés : Shallow water, variable topography, intrinsic finite volumes, well balance
@article{M2AN_2020__54_6_2125_0,
     author = {Bachini, Elena and Putti, Mario},
     title = {Geometrically intrinsic modeling of shallow water flows},
     journal = {ESAIM: Mathematical Modelling and Numerical Analysis },
     pages = {2125--2157},
     publisher = {EDP-Sciences},
     volume = {54},
     number = {6},
     year = {2020},
     doi = {10.1051/m2an/2020031},
     mrnumber = {4160324},
     language = {en},
     url = {http://www.numdam.org/articles/10.1051/m2an/2020031/}
}
TY  - JOUR
AU  - Bachini, Elena
AU  - Putti, Mario
TI  - Geometrically intrinsic modeling of shallow water flows
JO  - ESAIM: Mathematical Modelling and Numerical Analysis 
PY  - 2020
SP  - 2125
EP  - 2157
VL  - 54
IS  - 6
PB  - EDP-Sciences
UR  - http://www.numdam.org/articles/10.1051/m2an/2020031/
DO  - 10.1051/m2an/2020031
LA  - en
ID  - M2AN_2020__54_6_2125_0
ER  - 
%0 Journal Article
%A Bachini, Elena
%A Putti, Mario
%T Geometrically intrinsic modeling of shallow water flows
%J ESAIM: Mathematical Modelling and Numerical Analysis 
%D 2020
%P 2125-2157
%V 54
%N 6
%I EDP-Sciences
%U http://www.numdam.org/articles/10.1051/m2an/2020031/
%R 10.1051/m2an/2020031
%G en
%F M2AN_2020__54_6_2125_0
Bachini, Elena; Putti, Mario. Geometrically intrinsic modeling of shallow water flows. ESAIM: Mathematical Modelling and Numerical Analysis , Tome 54 (2020) no. 6, pp. 2125-2157. doi : 10.1051/m2an/2020031. http://www.numdam.org/articles/10.1051/m2an/2020031/

M. Abate and F. Tovena, Curves and Surfaces. Springer-Verlag Italia, Milano, Italy (2012). | DOI | MR | Zbl

B. Andreianov and K. Sbihi, Well-posedness of general boundary-value problems for scalar conservation laws. Trans. AMS 367 (2015) 3763–3806. | DOI | MR

B. Andreianov, K.H. Karlsen and N.H. Risebro, On vanishing viscosity approximation of conservation laws with discontinuous flux. Netw. Heterogen. Media 5 (2010) 617–633. | DOI | MR | Zbl

B. Andreianov, K.H. Karlsen and N.H. Risebro, A theory of L 1 -dissipative solvers for scalar conservation laws with discontinuous flux. Arch. Ratio. Mech. Anal. 201 (2011) 27–86. | DOI | MR | Zbl

E. Audusse, F. Bouchut, M. Bristeau, R. Klein and B. Perthame, A fast and stable well-balanced scheme with hydrostatic reconstruction for shallow water flows. SIAM J. Sci. Comput. 25 (2004) 2050–2065. | DOI | MR | Zbl

E. Audusse, C. Chalons and P. Ung, A simple well-balanced and positive numerical scheme for the shallow-water system. Commun. Math. Sci. 13 (2015) 1317–1332. | DOI | MR

C. Berthon and C. Chalons, A fully well-balanced, positive and entropy-satisfying Godunov-type method for the shallow-water equations. Math. Comput. 85 (2016) 1281–1307. | DOI | MR

F. Bouchut, Nonlinear Stability of Finite Volume Methods for Hyperbolic Conservation Laws and Well-Balanced Schemes for Sources.Birkhaäuser Verlag, Basel, Switzerland (2004). | MR | Zbl

F. Bouchut and S. Boyaval, A new model for shallow viscoelastic fluids. Math. Models Methods Appl. Sci. 23 (2013) 1479–1526. | DOI | MR | Zbl

F. Bouchut and M. Westdickenberg, Gravity driven shallow water models for arbitrary topography. Commun. Math. Sci. 2 (2004) 359–389. | DOI | MR | Zbl

F. Bouchut, A. Mangeney-Castelnau, B. Perthame and J.-P. Vilotte, A new model of Saint Venant and Savage-Hutter type for gravity driven shallow water flows, C. R. Math. Acad. Sci. Paris 336 (2003) 531–536. | DOI | MR | Zbl

D. Bresch, Shallow-water equations and related topics, chapter 1. In: Vol. 5 of Handbook of Differential Equations: Evolutionary Equations, edited by C. Dafermos and M. Pokorný. North-Holland (2009) 1–104. | MR | Zbl

H. Childs, E. Brugger, B. Whitlock, J. Meredith, S. Ahern, D. Pugmire, K. Biagas, M. Miller, C. Harrison, G.H. Weber, H. Krishnan, T. Fogal, A. Sanderson, C. Garth, E.W. Bethel, D. Camp, O. Rübel, M. Durant, J.M. Favre and P. Navrátil, VisIt: an end-user tool for visualizing and analyzing very large data. In: High Performance Visualization – Enabling Extreme-Scale Scientific Insight (2012) 357–372.

A. Decoene, L. Bonaventura, E. Miglio and F. Saleri, Asymptotic derivation of the section-averaged shallow water equations for natural river hydraulics. Math. Models Methods Appl. Sci. 19 (2009) 387–417. | DOI | MR | Zbl

O. Delestre, C. Lucas, P.-A. Ksinant, F. Darboux, C. Laguerre, T.N.T. Vo, F. James and S. Cordier, SWASHES: a compilation of shallow water analytic solutions for hydraulic and environmental studies. Int. J. Numer. Methods Fluids 72 (2013) 269–300. | DOI | MR

M.P. Do Carmo, Differential Geometry of Curves and Surfaces. Prentice-Hall, Englewood Cliffs, New Jersey (1976). | MR | Zbl

G. Dziuk and C.M. Elliott, Finite element methods for surfaces PDEs. Acta Numer. 22 (2013) 289–396. | DOI | MR | Zbl

I. Fent, M. Putti, C. Gregoretti and S. Lanzoni, Modeling shallow water flows on general terrains. Adv. Water Resour. 121 (2018) 316–332. | DOI

E.D. Fernández-Nieto, F. Bouchut, D. Bresch, M.J. Castro Daz and A. Mangeney-Castelnau, A new Savage-Hutter type model for submarine avalanches and generated tsunami. J. Comput. Phys. 227 (2008) 7720–7754. | DOI | MR | Zbl

K. Georg and J. Tausch, Some error estimates for the numerical approximation of surface integrals. Math. Comput. 62 (1994) 755–763. | DOI | MR | Zbl

J.M.N.T. Gray, M. Wieland and K. Hutter, Gravity-driven free surface flow of granular avalanches over complex basal topography. Philos. Trans. R. Soc. A 455 (1999) 1841–1874. | MR | Zbl

A. Harten, P.D. Lax and B.V. Leer, On upstream differencing and Godunov-type schemes for hyperbolic conservation laws. SIAM Rev. 25 (1983) 35–61. | DOI | MR | Zbl

R.L. Higdon, Numerical modelling of ocean circulation. Acta Numer. 15 (2006) 385–470. | DOI | MR | Zbl

J.R. Holton, An Introduction to Dynamic Meteorology. Elsevier Academic Press, Burlington, MA (2004).

R.M. Iverson and D.L. George, A depth-averaged debris-flow model that includes the effects of evolving dilatancy. I. Physical basis. Proc. R. Soc. London 470 (2014) 20130819. | MR

S. Lanzoni, A. Siviglia, A. Frascati and G. Seminara, Long waves in erodible channels and morphodynamic influence. Water Resour. Res. 42 (2006) W06D17. | DOI

L. Moretti, K. Allstadt, A. Mangeney-Castelnau, Y. Capdeville, E. Stutzmann and F. Bouchut, Numerical modeling of the Mount Meager landslide constrained by its force history derived from seismic data. J. Geophys. Res. 120 (2015) 2579–2599. | DOI

J.-M. Morvan, Generalized Curvatures. In: Vol. 2 of Geometry and Computing. Springer Science & Business Media, Berlin, Heidelberg (2008). | MR | Zbl

P. Nevalainen, I. Jambor, J. Pohjankukka, J. Heikkonen and T. Pahikkala, Triangular curvature approximation of surfaces – filtering the spurious mode. In: 6th International Conference on Pattern Recognition Applications and Methods. SCITEPRESS – Science and Technology Publications (2017) 684–692. | DOI

S. Nigam and V. Agrawal, A. Review, Curvature approximation on triangular meshes. Int. J. Eng. Sci. Innov. Technol. (IJESIT) 2 (2013) 330–339.

M. Pelanti, F. Bouchut and A. Mangeney-Castelnau, A Roe-type scheme for two-phase shallow granular flows over variable topography. ESAIM: M2AN 42 (2008) 851–885. | DOI | Numdam | MR | Zbl

J.A. Rossmanith, D.S. Bale and R.J. Leveque, A wave propagation algorithm for hyperbolic systems on curved manifolds. J. Comput. Phys. 199 (2004) 631–662. | DOI | MR | Zbl

S.B. Savage and K. Hutter, The motion of a finite mass of granular material down a rough incline. J. Fluid Mech. 199 (1989) 177–215. | DOI | MR | Zbl

S.B. Savage and K. Hutter, The dynamics of avalanches of granular materials from initiation to runout. Part I: Analysis. Acta Mech. 86 (1991) 201–223. | DOI | MR | Zbl

T. Song, A. Main, G. Scovazzi and M. Ricchiuto, The shifted boundary method for hyperbolic systems: embedded domain computations of linear waves and shallow water flows. J. Comput. Phys. 369 (2018) 45–79. | DOI | MR

E. Toro, Shock-Capturing Methods for Free-Surface Shallow Flows. John Wiley (2001). | Zbl

E. Toro, M. Spruce and W. Speares, Restoration of the contact surface in the Harten–Lax–van Leer Riemann solver. Shock Waves 4 (1994) 25–34. | DOI | Zbl

G. Zolezzi and G. Seminara, Downstream and upstream influence in river meandering. Part 1. General theory and application to overdeepening. J. Fluid Mech. 438 (2001) 183–211. | DOI | MR | Zbl

Cité par Sources :