The dynamic Laplace operator arises from extending problems of isoperimetry from fixed manifolds to manifolds evolved by general nonlinear dynamics. Eigenfunctions of this operator are used to identify and track finite-time coherent sets, which physically manifest in fluid flows as jets, vortices, and more complicated structures. Two robust and efficient finite-element discretisation schemes for numerically computing the dynamic Laplacian were proposed in Froyland and Junge [SIAM J. Appl. Dyn. Syst. 17 (2018) 1891–1924]. In this work we consider higher-order versions of these two numerical schemes and analyse them experimentally. We also prove the numerically computed eigenvalues and eigenvectors converge to the true objects for both schemes under certain assumptions. We provide an efficient implementation of the higher-order element schemes in an accompanying Julia package.
Accepté le :
Publié le :
DOI : 10.1051/m2an/2020027
Mots-clés : Dynamic Laplacian, finite-time coherent sets, finite elements, transfer operator
@article{M2AN_2020__54_5_1777_0, author = {Schilling, Nathanael and Froyland, Gary and Junge, Oliver}, title = {Higher-order finite element approximation of the dynamic {Laplacian}}, journal = {ESAIM: Mathematical Modelling and Numerical Analysis }, pages = {1777--1795}, publisher = {EDP-Sciences}, volume = {54}, number = {5}, year = {2020}, doi = {10.1051/m2an/2020027}, mrnumber = {4127955}, zbl = {1470.37106}, language = {en}, url = {http://www.numdam.org/articles/10.1051/m2an/2020027/} }
TY - JOUR AU - Schilling, Nathanael AU - Froyland, Gary AU - Junge, Oliver TI - Higher-order finite element approximation of the dynamic Laplacian JO - ESAIM: Mathematical Modelling and Numerical Analysis PY - 2020 SP - 1777 EP - 1795 VL - 54 IS - 5 PB - EDP-Sciences UR - http://www.numdam.org/articles/10.1051/m2an/2020027/ DO - 10.1051/m2an/2020027 LA - en ID - M2AN_2020__54_5_1777_0 ER -
%0 Journal Article %A Schilling, Nathanael %A Froyland, Gary %A Junge, Oliver %T Higher-order finite element approximation of the dynamic Laplacian %J ESAIM: Mathematical Modelling and Numerical Analysis %D 2020 %P 1777-1795 %V 54 %N 5 %I EDP-Sciences %U http://www.numdam.org/articles/10.1051/m2an/2020027/ %R 10.1051/m2an/2020027 %G en %F M2AN_2020__54_5_1777_0
Schilling, Nathanael; Froyland, Gary; Junge, Oliver. Higher-order finite element approximation of the dynamic Laplacian. ESAIM: Mathematical Modelling and Numerical Analysis , Tome 54 (2020) no. 5, pp. 1777-1795. doi : 10.1051/m2an/2020027. http://www.numdam.org/articles/10.1051/m2an/2020027/
[1] Templates for the Solution of Algebraic Eigenvalue Problems: A Practical Guide. SIAM (2000). | DOI | Zbl
, , , and ,[2] Estimation of the effect of numerical integration in finite element eigenvalue approximation. Numer. Math. 56 (1989) 735–762. | DOI | MR | Zbl
and ,[3] An efficient Runge–Kutta (4, 5) pair. Comput. Math. App. 32 (1996) 15–28. | MR | Zbl
and ,[4] The use of pointwise interpolation in domain decomposition methods with nonnested meshes. SIAM J. Sci. Comput. 16 (1995) 250–256. | DOI | MR | Zbl
,[5] KristofferC/JuAFEM.jl: finite element toolbox for Julia. Available from: https://github.com/KristofferC/JuAFEM.jl (2020).
,[6] Metastable states of symmetric Markov semigroups II. J. London Math. Soc. s2–26 (1982) 541–556. | DOI | MR | Zbl
,[7] On the approximation of complicated dynamical behavior. SIAM J. Numer. Anal. 36 (1999) 491–515. | DOI | MR | Zbl
and ,[8] Robust Perron cluster analysis in conformation dynamics. Linear Algebra Appl. 398 (2005) 161–184. | DOI | MR | Zbl
and ,[9] Theory and Practice of Finite Elements. In: Vol 159 of Applied Mathematical Sciences. Springer Science & Business Media (2004). | DOI | MR | Zbl
and ,[10] Partial Differential Equations. In: Vol 19 of Graduate Studies in Mathematics. American Mathematical Society (1997). | MR | Zbl
,[11] Statistically optimal almost-invariant sets. Phys. D: Nonlinear Phenom. 200 (2005) 205–219. | DOI | MR | Zbl
,[12] Dynamic isoperimetry and the geometry of Lagrangian coherent structures. Nonlinearity 28 (2015) 3587–3622. | DOI | MR | Zbl
,[13] On fast computation of finite-time coherent sets using radial basis functions. Chaos: Interdiscip. J. Nonlinear Sci. 25 (2015) 087409. | DOI | MR | Zbl
and ,[14] Robust FEM-based extraction of finite-time coherent sets using scattered, sparse, and incomplete trajectories. SIAM J. Appl. Dyn. Syst. 17 (2018) 1891–1924. | DOI | MR | Zbl
and ,[15] A dynamic Laplacian for identifying Lagrangian coherent structures on weighted Riemannian manifolds. To appear in: J. Nonlinear. Sci. (2017). | DOI | MR | Zbl
and ,[16] Almost-invariant sets and invariant manifolds-connecting probabilistic and geometric descriptions of coherent structures in flows. Phys. D: Nonlinear Phenom. 238 (2009) 1507–1523. | DOI | MR | Zbl
and ,[17] Coherent sets for nonautonomous dynamical systems. Phys. D: Nonlinear Phenom. 239 (2010) 1527–1541. | DOI | MR | Zbl
, and ,[18] Sparse eigenbasis approximation: multiple feature extraction across spatiotemporal scales with application to coherent set identification. Commun. Nonlinear Sci. Numer. Simul. 77 (2019) 81–107. | DOI | MR | Zbl
, and ,[19] Calculus of Variations. Prentice-Hall, Inc. (1963). | MR | Zbl
and ,[20] A geometric heat-flow theory of Lagrangian coherent structures. J. Nonlinear Sci. 30 (2020) 1849–1888. | DOI | MR | Zbl
and ,[21] Perturbation Theory for Linear Operators, reprint of the 2nd edition. In: Classics in Mathematics. Springer (1995). | MR | Zbl
,[22] Geometry/VoronoiDelaunay.jl: fast and robust Voronoi & Delaunay tesselation creation with Julia. Available from: https://github.com/JuliaGeometry/VoronoiDelaunay.jl (2000).
, et al.,[23] DifferentialEquations.jl – a performant and feature-rich ecosystem for solving differential equations in Julia. J. Open Res. Softw. 5 (2017) 15. | DOI
and ,[24] On the Lagrangian dynamics of atmospheric zonal jets and the permeability of the stratospheric polar vortex. J. Atmos. Sci. 64 (2007) 3595–3610. | DOI
, , , , and ,[25] An Analysis of the Finite Element Method. In: Prentice Hall Series in Automatic Computation. Prentice-Hall Englewood Cliffs, NJ (1973). | MR | Zbl
and ,Cité par Sources :