Higher-order finite element approximation of the dynamic Laplacian
ESAIM: Mathematical Modelling and Numerical Analysis , Tome 54 (2020) no. 5, pp. 1777-1795.

The dynamic Laplace operator arises from extending problems of isoperimetry from fixed manifolds to manifolds evolved by general nonlinear dynamics. Eigenfunctions of this operator are used to identify and track finite-time coherent sets, which physically manifest in fluid flows as jets, vortices, and more complicated structures. Two robust and efficient finite-element discretisation schemes for numerically computing the dynamic Laplacian were proposed in Froyland and Junge [SIAM J. Appl. Dyn. Syst. 17 (2018) 1891–1924]. In this work we consider higher-order versions of these two numerical schemes and analyse them experimentally. We also prove the numerically computed eigenvalues and eigenvectors converge to the true objects for both schemes under certain assumptions. We provide an efficient implementation of the higher-order element schemes in an accompanying Julia package.

Reçu le :
Accepté le :
Publié le :
DOI : 10.1051/m2an/2020027
Classification : 37C30, 37C60, 37M99, 65P99
Mots-clés : Dynamic Laplacian, finite-time coherent sets, finite elements, transfer operator
@article{M2AN_2020__54_5_1777_0,
     author = {Schilling, Nathanael and Froyland, Gary and Junge, Oliver},
     title = {Higher-order finite element approximation of the dynamic {Laplacian}},
     journal = {ESAIM: Mathematical Modelling and Numerical Analysis },
     pages = {1777--1795},
     publisher = {EDP-Sciences},
     volume = {54},
     number = {5},
     year = {2020},
     doi = {10.1051/m2an/2020027},
     mrnumber = {4127955},
     zbl = {1470.37106},
     language = {en},
     url = {http://www.numdam.org/articles/10.1051/m2an/2020027/}
}
TY  - JOUR
AU  - Schilling, Nathanael
AU  - Froyland, Gary
AU  - Junge, Oliver
TI  - Higher-order finite element approximation of the dynamic Laplacian
JO  - ESAIM: Mathematical Modelling and Numerical Analysis 
PY  - 2020
SP  - 1777
EP  - 1795
VL  - 54
IS  - 5
PB  - EDP-Sciences
UR  - http://www.numdam.org/articles/10.1051/m2an/2020027/
DO  - 10.1051/m2an/2020027
LA  - en
ID  - M2AN_2020__54_5_1777_0
ER  - 
%0 Journal Article
%A Schilling, Nathanael
%A Froyland, Gary
%A Junge, Oliver
%T Higher-order finite element approximation of the dynamic Laplacian
%J ESAIM: Mathematical Modelling and Numerical Analysis 
%D 2020
%P 1777-1795
%V 54
%N 5
%I EDP-Sciences
%U http://www.numdam.org/articles/10.1051/m2an/2020027/
%R 10.1051/m2an/2020027
%G en
%F M2AN_2020__54_5_1777_0
Schilling, Nathanael; Froyland, Gary; Junge, Oliver. Higher-order finite element approximation of the dynamic Laplacian. ESAIM: Mathematical Modelling and Numerical Analysis , Tome 54 (2020) no. 5, pp. 1777-1795. doi : 10.1051/m2an/2020027. http://www.numdam.org/articles/10.1051/m2an/2020027/

[1] Z. Bai, J. Demmel, J. Dongarra, A. Ruhe and H. Van Der Vorst, Templates for the Solution of Algebraic Eigenvalue Problems: A Practical Guide. SIAM (2000). | DOI | Zbl

[2] U. Banerjee and J.E. Osborn, Estimation of the effect of numerical integration in finite element eigenvalue approximation. Numer. Math. 56 (1989) 735–762. | DOI | MR | Zbl

[3] P. Bogacki and L.F. Shampine, An efficient Runge–Kutta (4, 5) pair. Comput. Math. App. 32 (1996) 15–28. | MR | Zbl

[4] X.-C. Cai, The use of pointwise interpolation in domain decomposition methods with nonnested meshes. SIAM J. Sci. Comput. 16 (1995) 250–256. | DOI | MR | Zbl

[5] K. Carlsson, KristofferC/JuAFEM.jl: finite element toolbox for Julia. Available from: https://github.com/KristofferC/JuAFEM.jl (2020).

[6] E.B. Davies, Metastable states of symmetric Markov semigroups II. J. London Math. Soc. s2–26 (1982) 541–556. | DOI | MR | Zbl

[7] M. Dellnitz and O. Junge, On the approximation of complicated dynamical behavior. SIAM J. Numer. Anal. 36 (1999) 491–515. | DOI | MR | Zbl

[8] P. Deuflhard and M. Weber, Robust Perron cluster analysis in conformation dynamics. Linear Algebra Appl. 398 (2005) 161–184. | DOI | MR | Zbl

[9] A. Ern and J. Guermond, Theory and Practice of Finite Elements. In: Vol 159 of Applied Mathematical Sciences. Springer Science & Business Media (2004). | DOI | MR | Zbl

[10] L. Evans, Partial Differential Equations. In: Vol 19 of Graduate Studies in Mathematics. American Mathematical Society (1997). | MR | Zbl

[11] G. Froyland, Statistically optimal almost-invariant sets. Phys. D: Nonlinear Phenom. 200 (2005) 205–219. | DOI | MR | Zbl

[12] G. Froyland, Dynamic isoperimetry and the geometry of Lagrangian coherent structures. Nonlinearity 28 (2015) 3587–3622. | DOI | MR | Zbl

[13] G. Froyland and O. Junge, On fast computation of finite-time coherent sets using radial basis functions. Chaos: Interdiscip. J. Nonlinear Sci. 25 (2015) 087409. | DOI | MR | Zbl

[14] G. Froyland and O. Junge, Robust FEM-based extraction of finite-time coherent sets using scattered, sparse, and incomplete trajectories. SIAM J. Appl. Dyn. Syst. 17 (2018) 1891–1924. | DOI | MR | Zbl

[15] G. Froyland and E. Kwok, A dynamic Laplacian for identifying Lagrangian coherent structures on weighted Riemannian manifolds. To appear in: J. Nonlinear. Sci. (2017). | DOI | MR | Zbl

[16] G. Froyland and K. Padberg, Almost-invariant sets and invariant manifolds-connecting probabilistic and geometric descriptions of coherent structures in flows. Phys. D: Nonlinear Phenom. 238 (2009) 1507–1523. | DOI | MR | Zbl

[17] G. Froyland, S. Lloyd and N. Santitissadeekorn, Coherent sets for nonautonomous dynamical systems. Phys. D: Nonlinear Phenom. 239 (2010) 1527–1541. | DOI | MR | Zbl

[18] G. Froyland, C. Rock and K. Sakellariou, Sparse eigenbasis approximation: multiple feature extraction across spatiotemporal scales with application to coherent set identification. Commun. Nonlinear Sci. Numer. Simul. 77 (2019) 81–107. | DOI | MR | Zbl

[19] I.M. Gelfand and S.V. Fomin, Calculus of Variations. Prentice-Hall, Inc. (1963). | MR | Zbl

[20] D. Karrasch and J. Keller, A geometric heat-flow theory of Lagrangian coherent structures. J. Nonlinear Sci. 30 (2020) 1849–1888. | DOI | MR | Zbl

[21] T. Kato, Perturbation Theory for Linear Operators, reprint of the 2nd edition. In: Classics in Mathematics. Springer (1995). | MR | Zbl

[22] A. Keselman, et al., Geometry/VoronoiDelaunay.jl: fast and robust Voronoi & Delaunay tesselation creation with Julia. Available from: https://github.com/JuliaGeometry/VoronoiDelaunay.jl (2000).

[23] C. Rackauckas and Q. Nie, DifferentialEquations.jl – a performant and feature-rich ecosystem for solving differential equations in Julia. J. Open Res. Softw. 5 (2017) 15. | DOI

[24] I.I. Rypina, M.G. Brown, F.J. Beron-Vera, H. Koçak, M.J. Olascoaga and I.A. Udovydchenkov, On the Lagrangian dynamics of atmospheric zonal jets and the permeability of the stratospheric polar vortex. J. Atmos. Sci. 64 (2007) 3595–3610. | DOI

[25] G. Strang and G.J. Fix, An Analysis of the Finite Element Method. In: Prentice Hall Series in Automatic Computation. Prentice-Hall Englewood Cliffs, NJ (1973). | MR | Zbl

Cité par Sources :